import unittest
-from ..domains import *
+from ..domains import And, Or
from ..linexprs import Symbol, symbols
-from ..polyhedra import *
+from ..polyhedra import Empty, Eq, Ge, Polyhedron
class TestDomain(unittest.TestCase):
def setUp(self):
x, y = symbols('x y')
self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y])
- self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
+ self.square2 = Polyhedron(inequalities=[x - 1, 3 - x, y - 1, 3 - y])
self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
- self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
- self.square6 = Polyhedron(equalities=[3 - y], inequalities=[x - 1, 3 - x, y - 1])
+ self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 - y])
+ self.square6 = Polyhedron(equalities=[3 - y],
+ inequalities=[x - 1, 3 - x, y - 1])
self.unbound_poly = Polyhedron(inequalities=[x, 3 - x, y])
self.universe = Polyhedron([])
self.empty = Empty
self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
- self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+ self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0),
+ And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)),
+ And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
self.dropped = And(Ge(y, 0), Ge(-y + 2, 0))
- self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
- self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
- self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
- self.sum2 =And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
- self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)), And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0)))
+ self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0),
+ Ge(-y + 2, 0))
+ self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)),
+ And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0),
+ Ge(-y + 3, 0)))
+ self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)),
+ And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0),
+ Ge(-y + 3, 0)))
+ self.sum2 = And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0),
+ Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
+ self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)),
+ And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0)))
self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
self.lexmin = And(Eq(y, 0), Eq(x, 0))
self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0))
Polyhedron(1)
def test_disjoint(self):
- self.assertEqual(self.square1.disjoint(), self.disjoint)
- self.assertEqual(self.empty.disjoint(), Empty)
- self.assertEqual(self.universe.disjoint(), self.universe)
+ self.assertEqual(self.square1.make_disjoint(), self.disjoint)
+ self.assertEqual(self.empty.make_disjoint(), Empty)
+ self.assertEqual(self.universe.make_disjoint(), self.universe)
def test_isempty(self):
self.assertFalse(self.square1.isempty())
self.assertEqual(self.universe.project([]), self.universe)
self.assertEqual(self.empty.project([]), Empty)
- def test_simplify(self):
- self.assertEqual(self.universe.simplify(), self.universe)
- self.assertEqual(self.empty.simplify(), Empty)
-
def test_sample(self):
- self.assertEqual(self.square6.sample(), {Symbol('x'): 1, Symbol('y'): 3})
+ self.assertEqual(self.square6.sample(),
+ {Symbol('x'): 1, Symbol('y'): 3})
with self.assertRaises(ValueError):
self.empty.sample()
self.assertEqual(self.universe.sample(), {})
def test_intersection(self):
- self.assertEqual(self.square1.intersection(self.square2), self.intersection)
+ self.assertEqual(self.square1.intersection(self.square2),
+ self.intersection)
def test_and(self):
self.assertEqual(self.square2 & self.square1, self.intersection)
def test_difference(self):
self.assertEqual(self.square2 - self.square1, self.difference1)
- self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
+ self.assertEqual(Polyhedron(self.square2 - self.square1),
+ self.difference2)
self.assertEqual(self.square2 - self.square2, Empty)
self.assertEqual(self.universe - self.universe, Empty)
self.assertEqual(self.square1.lexmax(), self.lexmax)
self.assertEqual(self.universe.lexmax(), self.universe)
self.assertEqual(self.empty.lexmax(), Empty)
-
- def test_involves_vars(self):
- self.assertTrue(self.square1.involves_vars(symbols('x y')))
- self.assertFalse(self.empty.involves_vars(symbols('x')))
- self.assertFalse(self.universe.involves_vars(symbols('x')))