#!/usr/bin/env python3
-from pypol import *
+# In geometry, the tesseract is the four-dimensional analog of the cube; the
+# tesseract is to the cube as the cube is to the square. Just as the surface of
+# the cube consists of 6 square faces, the hypersurface of the tesseract
+# consists of 8 cubical cells.
+
+from linpy import Le, symbols
+
x, y, z, t = symbols('x y z t')
-tesseract = \
- Le(0, x) & Le(x, 1) & \
- Le(0, y) & Le(y, 1) & \
- Le(0, z) & Le(z, 1) & \
- Le(0, t) & Le(t, 1)
+tesseract = Le(0, x, 1) & Le(0, y, 1) & Le(0, z, 1) & Le(0, t, 1)
+
def faces(polyhedron):
for points in polyhedron.faces():
face = points[0].aspolyhedron()
- face = face.union(*[point.aspolyhedron() for point in points[1:]])
- face = face.aspolyhedron()
+ face = face.convex_union(*[point.aspolyhedron()
+ for point in points[1:]])
yield face
-print('Faces of tesseract\n\n {}\n\nare:\n'.format(tesseract))
-for face in faces(tesseract):
- assert(len(face.vertices()) == 8)
- print(' {}'.format(face))
+
+if __name__ == '__main__':
+ print('Faces of tesseract\n\n {}\n\nare:\n'.format(tesseract))
+ for face in faces(tesseract):
+ assert(len(face.vertices()) == 8)
+ print(' {}'.format(face))