__all__ = [
- 'Expression',
+ 'LinExpr',
'Symbol', 'Dummy', 'symbols',
'Rational',
]
def _polymorphic(func):
@functools.wraps(func)
def wrapper(left, right):
- if isinstance(right, Expression):
+ if isinstance(right, LinExpr):
return func(left, right)
elif isinstance(right, numbers.Rational):
right = Rational(right)
return wrapper
-class Expression:
+class LinExpr:
"""
- This class implements linear expressions.
+ A linear expression consists of a list of coefficient-variable pairs
+ that capture the linear terms, plus a constant term. Linear expressions
+ are used to build constraints. They are temporary objects that typically
+ have short lifespans.
+
+ Linear expressions are generally built using overloaded operators. For
+ example, if x is a Symbol, then x + 1 is an instance of LinExpr.
+
+ LinExpr instances are hashable, and should be treated as immutable.
"""
def __new__(cls, coefficients=None, constant=0):
"""
- Create a new expression.
+ Return a linear expression from a dictionary or a sequence, that maps
+ symbols to their coefficients, and a constant term. The coefficients and
+ the constant term must be rational numbers.
+
+ For example, the linear expression x + 2y + 1 can be constructed using
+ one of the following instructions:
+
+ >>> x, y = symbols('x y')
+ >>> LinExpr({x: 1, y: 2}, 1)
+ >>> LinExpr([(x, 1), (y, 2)], 1)
+
+ However, it may be easier to use overloaded operators:
+
+ >>> x, y = symbols('x y')
+ >>> x + 2*y + 1
+
+ Alternatively, linear expressions can be constructed from a string:
+
+ >>> LinExpr('x + 2*y + 1')
+
+ A linear expression with a single symbol of coefficient 1 and no
+ constant term is automatically subclassed as a Symbol instance. A linear
+ expression with no symbol, only a constant term, is automatically
+ subclassed as a Rational instance.
"""
if isinstance(coefficients, str):
if constant != 0:
raise TypeError('too many arguments')
- return Expression.fromstring(coefficients)
+ return LinExpr.fromstring(coefficients)
if coefficients is None:
return Rational(constant)
if isinstance(coefficients, Mapping):
def coefficient(self, symbol):
"""
- Return the coefficient value of the given symbol.
+ Return the coefficient value of the given symbol, or 0 if the symbol
+ does not appear in the expression.
"""
if not isinstance(symbol, Symbol):
raise TypeError('symbol must be a Symbol instance')
def coefficients(self):
"""
- Return a list of the coefficients of an expression
+ Iterate over the pairs (symbol, value) of linear terms in the
+ expression. The constant term is ignored.
"""
for symbol, coefficient in self._coefficients.items():
yield symbol, Rational(coefficient)
@property
def constant(self):
"""
- Return the constant value of an expression.
+ The constant term of the expression.
"""
return Rational(self._constant)
@property
def symbols(self):
"""
- Return a list of symbols in an expression.
+ The tuple of symbols present in the expression, sorted according to
+ Symbol.sortkey().
"""
return self._symbols
@property
def dimension(self):
"""
- Create and return a new linear expression from a string or a list of coefficients and a constant.
+ The dimension of the expression, i.e. the number of symbols present in
+ it.
"""
return self._dimension
def isconstant(self):
"""
- Return true if an expression is a constant.
+ Return True if the expression only consists of a constant term. In this
+ case, it is a Rational instance.
"""
return False
def issymbol(self):
"""
- Return true if an expression is a symbol.
+ Return True if an expression only consists of a symbol with coefficient
+ 1. In this case, it is a Symbol instance.
"""
return False
def values(self):
"""
- Return the coefficient and constant values of an expression.
+ Iterate over the coefficient values in the expression, and the constant
+ term.
"""
for coefficient in self._coefficients.values():
yield Rational(coefficient)
@_polymorphic
def __add__(self, other):
"""
- Return the sum of two expressions.
+ Return the sum of two linear expressions.
"""
coefficients = defaultdict(Fraction, self._coefficients)
for symbol, coefficient in other._coefficients.items():
coefficients[symbol] += coefficient
constant = self._constant + other._constant
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
__radd__ = __add__
@_polymorphic
def __sub__(self, other):
"""
- Return the difference between two expressions.
+ Return the difference between two linear expressions.
"""
coefficients = defaultdict(Fraction, self._coefficients)
for symbol, coefficient in other._coefficients.items():
coefficients[symbol] -= coefficient
constant = self._constant - other._constant
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
@_polymorphic
def __rsub__(self, other):
def __mul__(self, other):
"""
- Return the product of two expressions if other is a rational number.
+ Return the product of the linear expression by a rational.
"""
if isinstance(other, numbers.Rational):
coefficients = ((symbol, coefficient * other)
for symbol, coefficient in self._coefficients.items())
constant = self._constant * other
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
return NotImplemented
__rmul__ = __mul__
def __truediv__(self, other):
+ """
+ Return the quotient of the linear expression by a rational.
+ """
if isinstance(other, numbers.Rational):
coefficients = ((symbol, coefficient / other)
for symbol, coefficient in self._coefficients.items())
constant = self._constant / other
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
return NotImplemented
@_polymorphic
def __eq__(self, other):
"""
- Test whether two expressions are equal
+ Test whether two linear expressions are equal.
"""
- return isinstance(other, Expression) and \
+ return isinstance(other, LinExpr) and \
self._coefficients == other._coefficients and \
self._constant == other._constant
def scaleint(self):
"""
- Multiply an expression by a scalar to make all coefficients integer values.
+ Return the expression multiplied by its lowest common denominator to
+ make all values integer.
"""
lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
def subs(self, symbol, expression=None):
"""
- Subsitute symbol by expression in equations and return the resulting
- expression.
+ Substitute the given symbol by an expression and return the resulting
+ expression. Raise TypeError if the resulting expression is not linear.
+
+ >>> x, y = symbols('x y')
+ >>> e = x + 2*y + 1
+ >>> e.subs(y, x - 1)
+ 3*x - 1
+
+ To perform multiple substitutions at once, pass a sequence or a
+ dictionary of (old, new) pairs to subs.
+
+ >>> e.subs({x: y, y: x})
+ 2*x + y + 1
"""
if expression is None:
if isinstance(symbol, Mapping):
if othersymbol != symbol]
coefficient = result._coefficients.get(symbol, 0)
constant = result._constant
- result = Expression(coefficients, constant) + coefficient*expression
+ result = LinExpr(coefficients, constant) + coefficient*expression
return result
@classmethod
@classmethod
def fromstring(cls, string):
"""
- Create an expression from a string.
+ Create an expression from a string. Raise SyntaxError if the string is
+ not properly formatted.
"""
# add implicit multiplication operators, e.g. '5x' -> '5*x'
- string = Expression._RE_NUM_VAR.sub(r'\1*\2', string)
+ string = LinExpr._RE_NUM_VAR.sub(r'\1*\2', string)
tree = ast.parse(string, 'eval')
return cls._fromast(tree)
@classmethod
def fromsympy(cls, expr):
"""
- Convert sympy object to an expression.
+ Create a linear expression from a sympy expression. Raise ValueError is
+ the sympy expression is not linear.
"""
import sympy
coefficients = []
coefficients.append((symbol, coefficient))
else:
raise ValueError('non-linear expression: {!r}'.format(expr))
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
def tosympy(self):
"""
- Return an expression as a sympy object.
+ Convert the linear expression to a sympy expression.
"""
import sympy
expr = 0
return expr
-class Symbol(Expression):
+class Symbol(LinExpr):
+ """
+ Symbols are the basic components to build expressions and constraints.
+ They correspond to mathematical variables. Symbols are instances of
+ class LinExpr and inherit its functionalities.
+
+ Two instances of Symbol are equal if they have the same name.
+ """
def __new__(cls, name):
"""
- Create and return a symbol from a string.
+ Return a symbol with the name string given in argument.
"""
if not isinstance(name, str):
raise TypeError('name must be a string')
@property
def name(self):
+ """
+ The name of the symbol.
+ """
return self._name
def __hash__(self):
return hash(self.sortkey())
def sortkey(self):
+ """
+ Return a sorting key for the symbol. It is useful to sort a list of
+ symbols in a consistent order, as comparison functions are overridden
+ (see the documentation of class LinExpr).
+
+ >>> sort(symbols, key=Symbol.sortkey)
+ """
return self.name,
def issymbol(self):
def asdummy(self):
"""
- Return a symbol as a Dummy Symbol.
+ Return a new Dummy symbol instance with the same name.
"""
return Dummy(self.name)
class Dummy(Symbol):
"""
- This class returns a dummy symbol to ensure that no variables are repeated in an expression
+ A variation of Symbol in which all symbols are unique and identified by
+ an internal count index. If a name is not supplied then a string value
+ of the count index will be used. This is useful when a unique, temporary
+ variable is needed and the name of the variable used in the expression
+ is not important.
+
+ Unlike Symbol, Dummy instances with the same name are not equal:
+
+ >>> x = Symbol('x')
+ >>> x1, x2 = Dummy('x'), Dummy('x')
+ >>> x == x1
+ False
+ >>> x1 == x2
+ False
+ >>> x1 == x1
+ True
"""
+
_count = 0
def __new__(cls, name=None):
"""
- Create and return a new dummy symbol.
+ Return a fresh dummy symbol with the name string given in argument.
"""
if name is None:
name = 'Dummy_{}'.format(Dummy._count)
def symbols(names):
"""
- Transform strings into instances of the Symbol class
+ This function returns a tuple of symbols whose names are taken from a comma
+ or whitespace delimited string, or a sequence of strings. It is useful to
+ define several symbols at once.
+
+ >>> x, y = symbols('x y')
+ >>> x, y = symbols('x, y')
+ >>> x, y = symbols(['x', 'y'])
"""
if isinstance(names, str):
names = names.replace(',', ' ').split()
return tuple(Symbol(name) for name in names)
-class Rational(Expression, Fraction):
+class Rational(LinExpr, Fraction):
"""
- This class represents integers and rational numbers of any size.
+ A particular case of linear expressions are rational values, i.e. linear
+ expressions consisting only of a constant term, with no symbol. They are
+ implemented by the Rational class, that inherits from both LinExpr and
+ fractions.Fraction classes.
"""
def __new__(cls, numerator=0, denominator=None):
@property
def constant(self):
- """
- Return rational as a constant.
- """
return self
def isconstant(self):
- """
- Test whether a value is a constant.
- """
return True
def __bool__(self):
@classmethod
def fromsympy(cls, expr):
- """
- Create a rational object from a sympy expression
- """
import sympy
if isinstance(expr, sympy.Rational):
return Rational(expr.p, expr.q)