Added some docs
[linpy.git] / pypol / polyhedra.py~
diff --git a/pypol/polyhedra.py~ b/pypol/polyhedra.py~
new file mode 100644 (file)
index 0000000..ccb1a8c
--- /dev/null
@@ -0,0 +1,358 @@
+import functools
+import math
+import numbers
+
+from . import islhelper
+
+from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point
+from .linexprs import Expression, Rational
+from .domains import Domain
+
+
+__all__ = [
+    'Polyhedron',
+    'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
+    'Empty', 'Universe',
+]
+
+
+class Polyhedron(Domain):
+
+    __slots__ = (
+        '_equalities',
+        '_inequalities',
+        '_constraints',
+        '_symbols',
+        '_dimension',
+    )
+
+    def __new__(cls, equalities=None, inequalities=None):
+        if isinstance(equalities, str):
+            if inequalities is not None:
+                raise TypeError('too many arguments')
+            return cls.fromstring(equalities)
+        elif isinstance(equalities, GeometricObject):
+            if inequalities is not None:
+                raise TypeError('too many arguments')
+            return equalities.aspolyhedron()
+        if equalities is None:
+            equalities = []
+        else:
+            for i, equality in enumerate(equalities):
+                if not isinstance(equality, Expression):
+                    raise TypeError('equalities must be linear expressions')
+                equalities[i] = equality.scaleint()
+        if inequalities is None:
+            inequalities = []
+        else:
+            for i, inequality in enumerate(inequalities):
+                if not isinstance(inequality, Expression):
+                    raise TypeError('inequalities must be linear expressions')
+                inequalities[i] = inequality.scaleint()
+        symbols = cls._xsymbols(equalities + inequalities)
+        islbset = cls._toislbasicset(equalities, inequalities, symbols)
+        return cls._fromislbasicset(islbset, symbols)
+
+    @property
+    def equalities(self):
+        return self._equalities
+
+    @property
+    def inequalities(self):
+        return self._inequalities
+
+    @property
+    def constraints(self):
+        return self._constraints
+
+    @property
+    def polyhedra(self):
+        return self,
+
+    def disjoint(self):
+        """
+        Return this set as disjoint.
+        """
+        return self
+
+    def isuniverse(self):
+        """
+        Return true if this set is the Universe set.
+        """
+        islbset = self._toislbasicset(self.equalities, self.inequalities,
+            self.symbols)
+        universe = bool(libisl.isl_basic_set_is_universe(islbset))
+        libisl.isl_basic_set_free(islbset)
+        return universe
+
+    def aspolyhedron(self):
+        """
+        Return polyhedral hull of this set.
+        """
+        return self
+
+    def __contains__(self, point):
+        if not isinstance(point, Point):
+            raise TypeError('point must be a Point instance')
+        if self.symbols != point.symbols:
+            raise ValueError('arguments must belong to the same space')
+        for equality in self.equalities:
+            if equality.subs(point.coordinates()) != 0:
+                return False
+        for inequality in self.inequalities:
+            if inequality.subs(point.coordinates()) < 0:
+                return False
+        return True
+
+    def subs(self, symbol, expression=None):
+        equalities = [equality.subs(symbol, expression)
+            for equality in self.equalities]
+        inequalities = [inequality.subs(symbol, expression)
+            for inequality in self.inequalities]
+        return Polyhedron(equalities, inequalities)
+
+    def _asinequalities(self):
+        inequalities = list(self.equalities)
+        inequalities.extend([-expression for expression in self.equalities])
+        inequalities.extend(self.inequalities)
+        return inequalities
+
+    def widen(self, other):
+        if not isinstance(other, Polyhedron):
+            raise ValueError('argument must be a Polyhedron instance')
+        inequalities1 = self._asinequalities()
+        inequalities2 = other._asinequalities()
+        inequalities = []
+        for inequality1 in inequalities1:
+            if other <= Polyhedron(inequalities=[inequality1]):
+                inequalities.append(inequality1)
+        for inequality2 in inequalities2:
+            for i in range(len(inequalities1)):
+                inequalities3 = inequalities1[:i] + inequalities[i + 1:]
+                inequalities3.append(inequality2)
+                polyhedron3 = Polyhedron(inequalities=inequalities3)
+                if self == polyhedron3:
+                    inequalities.append(inequality2)
+                    break
+        return Polyhedron(inequalities=inequalities)
+
+    @classmethod
+    def _fromislbasicset(cls, islbset, symbols):
+        if libisl.isl_basic_set_is_empty(islbset):
+            return Empty
+        if libisl.isl_basic_set_is_universe(islbset):
+            return Universe
+        islconstraints = islhelper.isl_basic_set_constraints(islbset)
+        equalities = []
+        inequalities = []
+        for islconstraint in islconstraints:
+            constant = libisl.isl_constraint_get_constant_val(islconstraint)
+            constant = islhelper.isl_val_to_int(constant)
+            coefficients = {}
+            for index, symbol in enumerate(symbols):
+                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint,
+                    libisl.isl_dim_set, index)
+                coefficient = islhelper.isl_val_to_int(coefficient)
+                if coefficient != 0:
+                    coefficients[symbol] = coefficient
+            expression = Expression(coefficients, constant)
+            if libisl.isl_constraint_is_equality(islconstraint):
+                equalities.append(expression)
+            else:
+                inequalities.append(expression)
+        libisl.isl_basic_set_free(islbset)
+        self = object().__new__(Polyhedron)
+        self._equalities = tuple(equalities)
+        self._inequalities = tuple(inequalities)
+        self._constraints = tuple(equalities + inequalities)
+        self._symbols = cls._xsymbols(self._constraints)
+        self._dimension = len(self._symbols)
+        return self
+
+    @classmethod
+    def _toislbasicset(cls, equalities, inequalities, symbols):
+        dimension = len(symbols)
+        indices = {symbol: index for index, symbol in enumerate(symbols)}
+        islsp = libisl.isl_space_set_alloc(mainctx, 0, dimension)
+        islbset = libisl.isl_basic_set_universe(libisl.isl_space_copy(islsp))
+        islls = libisl.isl_local_space_from_space(islsp)
+        for equality in equalities:
+            isleq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(islls))
+            for symbol, coefficient in equality.coefficients():
+                islval = str(coefficient).encode()
+                islval = libisl.isl_val_read_from_str(mainctx, islval)
+                index = indices[symbol]
+                isleq = libisl.isl_constraint_set_coefficient_val(isleq,
+                    libisl.isl_dim_set, index, islval)
+            if equality.constant != 0:
+                islval = str(equality.constant).encode()
+                islval = libisl.isl_val_read_from_str(mainctx, islval)
+                isleq = libisl.isl_constraint_set_constant_val(isleq, islval)
+            islbset = libisl.isl_basic_set_add_constraint(islbset, isleq)
+        for inequality in inequalities:
+            islin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(islls))
+            for symbol, coefficient in inequality.coefficients():
+                islval = str(coefficient).encode()
+                islval = libisl.isl_val_read_from_str(mainctx, islval)
+                index = indices[symbol]
+                islin = libisl.isl_constraint_set_coefficient_val(islin,
+                    libisl.isl_dim_set, index, islval)
+            if inequality.constant != 0:
+                islval = str(inequality.constant).encode()
+                islval = libisl.isl_val_read_from_str(mainctx, islval)
+                islin = libisl.isl_constraint_set_constant_val(islin, islval)
+            islbset = libisl.isl_basic_set_add_constraint(islbset, islin)
+        return islbset
+
+    @classmethod
+    def fromstring(cls, string):
+        domain = Domain.fromstring(string)
+        if not isinstance(domain, Polyhedron):
+            raise ValueError('non-polyhedral expression: {!r}'.format(string))
+        return domain
+
+    def __repr__(self):
+        strings = []
+        for equality in self.equalities:
+            strings.append('Eq({}, 0)'.format(equality))
+        for inequality in self.inequalities:
+            strings.append('Ge({}, 0)'.format(inequality))
+        if len(strings) == 1:
+            return strings[0]
+        else:
+            return 'And({})'.format(', '.join(strings))
+
+    def _repr_latex_(self):
+        strings = []
+        for equality in self.equalities:
+            strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
+        for inequality in self.inequalities:
+            strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
+        return '$${}$$'.format(' \\wedge '.join(strings))
+
+    @classmethod
+    def fromsympy(cls, expr):
+        domain = Domain.fromsympy(expr)
+        if not isinstance(domain, Polyhedron):
+            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+        return domain
+
+    def tosympy(self):
+        import sympy
+        constraints = []
+        for equality in self.equalities:
+            constraints.append(sympy.Eq(equality.tosympy(), 0))
+        for inequality in self.inequalities:
+            constraints.append(sympy.Ge(inequality.tosympy(), 0))
+        return sympy.And(*constraints)
+
+
+class EmptyType(Polyhedron):
+
+    __slots__ = Polyhedron.__slots__
+
+    def __new__(cls):
+        self = object().__new__(cls)
+        self._equalities = (Rational(1),)
+        self._inequalities = ()
+        self._constraints = self._equalities
+        self._symbols = ()
+        self._dimension = 0
+        return self
+
+    def widen(self, other):
+        if not isinstance(other, Polyhedron):
+            raise ValueError('argument must be a Polyhedron instance')
+        return other
+
+    def __repr__(self):
+        return 'Empty'
+
+    def _repr_latex_(self):
+        return '$$\\emptyset$$'
+
+Empty = EmptyType()
+
+
+class UniverseType(Polyhedron):
+
+    __slots__ = Polyhedron.__slots__
+
+    def __new__(cls):
+        self = object().__new__(cls)
+        self._equalities = ()
+        self._inequalities = ()
+        self._constraints = ()
+        self._symbols = ()
+        self._dimension = ()
+        return self
+
+    def __repr__(self):
+        return 'Universe'
+
+    def _repr_latex_(self):
+        return '$$\\Omega$$'
+
+Universe = UniverseType()
+
+
+def _polymorphic(func):
+    @functools.wraps(func)
+    def wrapper(left, right):
+        if not isinstance(left, Expression):
+            if isinstance(left, numbers.Rational):
+                left = Rational(left)
+            else:
+                raise TypeError('left must be a a rational number '
+                    'or a linear expression')
+        if not isinstance(right, Expression):
+            if isinstance(right, numbers.Rational):
+                right = Rational(right)
+            else:
+                raise TypeError('right must be a a rational number '
+                    'or a linear expression')
+        return func(left, right)
+    return wrapper
+
+@_polymorphic
+def Lt(left, right):
+    """
+    Return true if the first set is less than the second.
+    """
+    return Polyhedron([], [right - left - 1])
+
+@_polymorphic
+def Le(left, right):
+    """
+    Return true the first set is less than or equal to the second.
+    """
+    return Polyhedron([], [right - left])
+
+@_polymorphic
+def Eq(left, right):
+    """
+    Return true if the sets are equal.
+    """
+    return Polyhedron([left - right], [])
+
+@_polymorphic
+def Ne(left, right):
+    """
+    Return true if the sets are NOT equal.
+    """
+    return ~Eq(left, right)
+
+@_polymorphic
+def Gt(left, right):
+    """
+    Return true if the first set is greater than the second set.
+    """
+    return Polyhedron([], [left - right - 1])
+
+@_polymorphic
+def Ge(left, right):
+    """
+    Return true if the first set is greater than or equal the second set.
+    """
+    return Polyhedron([], [left - right])