#!/usr/bin/env python3
+# Plot a Menger sponge.
+#
+# The construction of a Menger sponge can be described as follows:
+#
+# 1. Begin with a cube.
+# 2. Divide every face of the cube into 9 squares, like a Rubik's Cube. This
+# will sub-divide the cube into 27 smaller cubes.
+# 3. Remove the smaller cube in the middle of each face, and remove the smaller
+# cube in the very center of the larger cube, leaving 20 smaller cubes. This
+# is a level-1 Menger sponge (resembling a Void Cube).
+# 4. Repeat steps 2 and 3 for each of the remaining smaller cubes, and continue
+# to iterate.
+
import argparse
-from pypol import *
+import matplotlib.pyplot as plt
+
+from math import ceil
+
+from matplotlib import pylab
+from mpl_toolkits.mplot3d import Axes3D
+
+from linpy import *
+
x, y, z = symbols('x y z')
domain = domain.subs({_x: x, _y: y, _z: z})
return domain
-def _menger(domain):
-
+def _menger(domain, size):
result = domain
- result |= translate(domain, dx=0, dy=1, dz=0)
- result |= translate(domain, dx=0, dy=2, dz=0)
- result |= translate(domain, dx=1, dy=0, dz=0)
- result |= translate(domain, dx=1, dy=2, dz=0)
- result |= translate(domain, dx=2, dy=0, dz=0)
- result |= translate(domain, dx=2, dy=1, dz=0)
- result |= translate(domain, dx=2, dy=2, dz=0)
-
- result |= translate(domain, dx=0, dy=0, dz=1)
- result |= translate(domain, dx=0, dy=2, dz=1)
- result |= translate(domain, dx=2, dy=0, dz=1)
- result |= translate(domain, dx=2, dy=2, dz=1)
-
- result |= translate(domain, dx=0, dy=0, dz=2)
- result |= translate(domain, dx=0, dy=1, dz=2)
- result |= translate(domain, dx=0, dy=2, dz=2)
- result |= translate(domain, dx=1, dy=0, dz=2)
- result |= translate(domain, dx=1, dy=2, dz=2)
- result |= translate(domain, dx=2, dy=0, dz=2)
- result |= translate(domain, dx=2, dy=1, dz=2)
- result |= translate(domain, dx=2, dy=2, dz=2)
-
+ result |= translate(domain, dx=0, dy=size, dz=0)
+ result |= translate(domain, dx=0, dy=2*size, dz=0)
+ result |= translate(domain, dx=size, dy=0, dz=0)
+ result |= translate(domain, dx=size, dy=2*size, dz=0)
+ result |= translate(domain, dx=2*size, dy=0, dz=0)
+ result |= translate(domain, dx=2*size, dy=size, dz=0)
+ result |= translate(domain, dx=2*size, dy=2*size, dz=0)
+ result |= translate(domain, dx=0, dy=0, dz=size)
+ result |= translate(domain, dx=0, dy=2*size, dz=size)
+ result |= translate(domain, dx=2*size, dy=0, dz=size)
+ result |= translate(domain, dx=2*size, dy=2*size, dz=size)
+ result |= translate(domain, dx=0, dy=0, dz=2*size)
+ result |= translate(domain, dx=0, dy=size, dz=2*size)
+ result |= translate(domain, dx=0, dy=2*size, dz=2*size)
+ result |= translate(domain, dx=size, dy=0, dz=2*size)
+ result |= translate(domain, dx=size, dy=2*size, dz=2*size)
+ result |= translate(domain, dx=2*size, dy=0, dz=2*size)
+ result |= translate(domain, dx=2*size, dy=size, dz=2*size)
+ result |= translate(domain, dx=2*size, dy=2*size, dz=2*size)
return result
-def menger(domain, count=1):
+def menger(domain, count=1, cut=False):
+ size = 1
for i in range(count):
- domain = _menger(domain)
+ domain = _menger(domain, size)
+ size *= 3
+ if cut:
+ domain &= Le(x + y + z, ceil(3 * size / 2))
return domain
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Compute a Menger sponge.')
- parser.add_argument('-n', '--iterations', type=int, default=1,
- help='number of iterations (default: 1)')
+ parser.add_argument('-n', '--iterations', type=int, default=2,
+ help='number of iterations (default: 2)')
+ parser.add_argument('-c', '--cut', action='store_true', default=False,
+ help='cut the sponge')
args = parser.parse_args()
cube = Le(0, x) & Le(x, 1) & Le(0, y) & Le(y, 1) & Le(0, z) & Le(z, 1)
- fractal = menger(cube, args.iterations)
- print('Menger sponge:')
- print(fractal)
- print('Number of polyhedra: {}'.format(len(fractal.polyhedra)))
+ fractal = menger(cube, args.iterations, args.cut)
+ fig = plt.figure(facecolor='white')
+ plot = fig.add_subplot(1, 1, 1, projection='3d', aspect='equal')
+ fractal.plot(plot)
+ pylab.show()