+import ctypes, ctypes.util
import functools
import numbers
-import ctypes, ctypes.util
-from pypol import isl
from fractions import Fraction, gcd
-libisl = ctypes.CDLL(ctypes.util.find_library('isl'))
+from . import isl
+from .isl import libisl
-libisl.isl_printer_get_str.restype = ctypes.c_char_p
__all__ = [
'Expression',
]
-_CONTEXT = isl.Context()
-
def _polymorphic_method(func):
@functools.wraps(func)
def wrapper(a, b):
return wrapper
+_main_ctx = isl.Context()
+
+
class Expression:
"""
This class implements linear expressions.
if not isinstance(constant, numbers.Rational):
raise TypeError('constant must be a rational number')
self._constant = constant
+ self._symbols = tuple(sorted(self._coefficients))
+ self._dimension = len(self._symbols)
return self
-
+ @property
def symbols(self):
- yield from sorted(self._coefficients)
+ return self._symbols
@property
def dimension(self):
- return len(list(self.symbols()))
+ return self._dimension
def coefficient(self, symbol):
if isinstance(symbol, Expression) and symbol.issymbol():
__getitem__ = coefficient
def coefficients(self):
- for symbol in self.symbols():
+ for symbol in self.symbols:
yield symbol, self.coefficient(symbol)
@property
return len(self._coefficients) == 0
def values(self):
- for symbol in self.symbols():
+ for symbol in self.symbols:
yield self.coefficient(symbol)
yield self.constant
def values_int(self):
- for symbol in self.symbols():
+ for symbol in self.symbols:
return self.coefficient(symbol)
return int(self.constant)
-
+ @property
def symbol(self):
if not self.issymbol():
raise ValueError('not a symbol: {}'.format(self))
- for symbol in self.symbols():
+ for symbol in self.symbols:
return symbol
def issymbol(self):
constant = self.constant - other.constant
return Expression(coefficients, constant)
- __rsub__ = __sub__
+ def __rsub__(self, other):
+ return -(self - other)
@_polymorphic_method
def __mul__(self, other):
def __str__(self):
string = ''
- symbols = sorted(self.symbols())
i = 0
for symbol in symbols:
coefficient = self[symbol]
def __hash__(self):
return hash((self._coefficients, self._constant))
- def _canonify(self):
+ def _toint(self):
lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
return self * lcm
@_polymorphic_method
def _eq(self, other):
- return Polyhedron(equalities=[(self - other)._canonify()])
+ return Polyhedron(equalities=[(self - other)._toint()])
@_polymorphic_method
def __le__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify()])
+ return Polyhedron(inequalities=[(other - self)._toint()])
@_polymorphic_method
def __lt__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify() + 1])
+ return Polyhedron(inequalities=[(other - self)._toint() - 1])
@_polymorphic_method
def __ge__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify()])
+ return Polyhedron(inequalities=[(self - other)._toint()])
@_polymorphic_method
def __gt__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify() + 1])
+ return Polyhedron(inequalities=[(self - other)._toint() - 1])
def constant(numerator=0, denominator=None):
raise TypeError('non-integer constraint: '
'{} == 0'.format(constraint))
self._equalities.append(constraint)
+ self._equalities = tuple(self._equalities)
self._inequalities = []
if inequalities is not None:
for constraint in inequalities:
if value.denominator != 1:
raise TypeError('non-integer constraint: '
'{} <= 0'.format(constraint))
- self._inequalities.append(constraint)
- self._bset = self.to_isl()
- return self._bset
-
-
+ self._inequalities.append(constraint)
+ self._inequalities = tuple(self._inequalities)
+ self._constraints = self._equalities + self._inequalities
+ self._symbols = set()
+ for constraint in self._constraints:
+ self.symbols.update(constraint.symbols)
+ self._symbols = tuple(sorted(self._symbols))
+ return self
+
@property
def equalities(self):
- yield from self._equalities
+ return self._equalities
@property
def inequalities(self):
- yield from self._inequalities
-
- @property
- def constant(self):
- return self._constant
-
- def isconstant(self):
- return len(self._coefficients) == 0
-
-
- def isempty(self):
- return bool(libisl.isl_basic_set_is_empty(self._bset))
+ return self._inequalities
+ @property
def constraints(self):
- yield from self.equalities
- yield from self.inequalities
-
+ return self._constraints
+ @property
def symbols(self):
- s = set()
- for constraint in self.constraints():
- s.update(constraint.symbols)
- yield from sorted(s)
-
- def symbol_count(self):
- s = []
- for constraint in self.constraints():
- s.append(constraint.symbols)
- return s
-
+ return self._symbols
+
@property
def dimension(self):
- return len(self.symbols())
+ return len(self.symbols)
def __bool__(self):
- # return false if the polyhedron is empty, true otherwise
- if self._equalities or self._inequalities:
- return False
- else:
- return True
-
+ return not self.is_empty()
def __contains__(self, value):
# is the value in the polyhedron?
def __eq__(self, other):
raise NotImplementedError
- def is_empty(self):
- return
+ def isempty(self):
+ bset = self._to_isl()
+ return bool(libisl.isl_basic_set_is_empty(bset))
def isuniverse(self):
- return self == universe
+ raise NotImplementedError
def isdisjoint(self, other):
# return true if the polyhedron has no elements in common with other
def issuperset(self, other):
# test whether every element in other is in the polyhedron
- for value in other:
- if value == self.constraints():
- return True
- else:
- return False
raise NotImplementedError
def __ge__(self, other):
for constraint in self.equalities:
constraints.append('{} == 0'.format(constraint))
for constraint in self.inequalities:
- constraints.append('{} <= 0'.format(constraint))
+ constraints.append('{} >= 0'.format(constraint))
return '{{{}}}'.format(', '.join(constraints))
def __repr__(self):
@classmethod
def fromstring(cls, string):
raise NotImplementedError
-
- def printer(self):
-
- ip = libisl.isl_printer_to_str(_CONTEXT)
- ip = libisl.isl_printer_print_val(ip, self) #self should be value
- string = libisl.isl_printer_get_str(ip).decode()
- print(string)
- return string
-
-
- def to_isl(self):
- space = libisl.isl_space_set_alloc(_CONTEXT, 0, len(self.symbol_count()))
- bset = libisl.isl_basic_set_empty(libisl.isl_space_copy(space))
- ls = libisl.isl_local_space_from_space(libisl.isl_space_copy(space))
+
+ def _symbolunion(self, *others):
+ symbols = set(self.symbols)
+ for other in others:
+ symbols.update(other.symbols)
+ return sorted(symbols)
+
+ def _to_isl(self, symbols=None):
+ if symbols is None:
+ symbols = self.symbols
+ num_coefficients = len(symbols)
+ space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
+ bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
+ ls = libisl.isl_local_space_from_space(space)
ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
- dict_ex = Expression().__dict__
- print(dict_ex)
- '''
- if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set
- need to change the symbols method to a lookup table for the integer value for each letter that could be a symbol
- '''
- if self.equalities:
- for _constant in dict_ex:
- value = dict_ex.get('_constant')
- ceq = libisl.isl_constraint_set_constant_val(ceq, value)
- for _coefficients in dict_ex:
- value_co = dict_ex.get('_coefficients')
- if value_co:
- ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_set_dim, self.symbols(), value_co)
- bset = libisl.isl_set_add_constraint(bset, ceq)
- bset = libisl.isl_basic_set_project_out(bset, libisl.isl_set_dim, 1, 1);
- elif self.inequalities:
- for _constant in dict_ex:
- value = dict_ex.get('_constant')
- cin = libisl.isl_constraint_set_constant_val(cin, value)
- for _coefficients in dict_ex:
- value_co = dict_ex.get('_coefficients')
- if value_co:
- cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_set_dim, self.symbols(), value_co)
- bset = libisl.isl_set_add_contraint(bset, cin)
-
- string = libisl.isl_printer_print_basic_set(bset)
- print('here')
- print(bset)
- print(self)
- #print(string)
+ '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set'''
+ if list(self.equalities): #check if any equalities exist
+ for eq in self.equalities:
+ coeff_eq = dict(eq.coefficients())
+ if eq.constant:
+ value = eq.constant
+ ceq = libisl.isl_constraint_set_constant_si(ceq, value)
+ for eq in coeff_eq:
+ num = coeff_eq.get(eq)
+ iden = symbols.index(eq)
+ ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+ if list(self.inequalities): #check if any inequalities exist
+ for ineq in self.inequalities:
+ coeff_in = dict(ineq.coefficients())
+ if ineq.constant:
+ value = ineq.constant
+ cin = libisl.isl_constraint_set_constant_si(cin, value)
+ for ineq in coeff_in:
+ num = coeff_in.get(ineq)
+ iden = symbols.index(ineq)
+ cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, cin)
+ bset = isl.BasicSet(bset)
return bset
-empty = eq(1, 1)
-
-
-universe = Polyhedron()
+ @classmethod
+ def _from_isl(cls, bset):
+ '''takes basic set in isl form and puts back into python version of polyhedron
+ isl example code gives isl form as:
+ "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
+ our printer is giving form as:
+ b'{ [i0] : 1 = 0 }' '''
+ raise NotImplementedError
+ equalities = ...
+ inequalities = ...
+ return cls(equalities, inequalities)
+ #bset = self
+ # if self._equalities:
+ # constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
+ # elif self._inequalities:
+ # constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
+ # print(constraints)
+ # return constraints
+
+empty = None #eq(0,1)
+universe = None #Polyhedron()
+
+
+if __name__ == '__main__':
+ ex1 = Expression(coefficients={'a': 1, 'x': 2}, constant=2)
+ ex2 = Expression(coefficients={'a': 3 , 'b': 2}, constant=3)
+ p = Polyhedron(inequalities=[ex1, ex2])
+ bs = p._to_isl()
+ print(bs)
+ print('empty ?', p.isempty())
+ print('empty ?', eq(0, 1).isempty())