from . import islhelper
from .islhelper import mainctx, libisl
-from .linexprs import LinExpr, Symbol, Rational
+from .linexprs import LinExpr, Symbol
from .geometry import GeometricObject, Point, Vector
class Domain(GeometricObject):
"""
A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
- computation of union and complementary operations.
+ computation of union, subtraction and complementary operations.
A domain with a unique polyhedron is automatically subclassed as a
Polyhedron instance.
"""
Return a domain from a sequence of polyhedra.
- >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
- >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
- >>> dom = Domain([square, square2])
+ >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+ >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
+ >>> dom = Domain(square1, square2)
+ >>> dom
+ Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y),
+ And(x <= 3, 1 <= x, y <= 3, 1 <= y))
It is also possible to build domains from polyhedra using arithmetic
- operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
- using one of the following instructions:
+ operators Domain.__or__(), Domain.__invert__() or functions Or() and
+ Not(), using one of the following instructions:
- >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
- >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
- >>> dom = square | square2
- >>> dom = Or(square, square2)
+ >>> dom = square1 | square2
+ >>> dom = Or(square1, square2)
Alternatively, a domain can be built from a string:
- >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
+ >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 1 <= x <= 3, 1 <= y <= 3')
Finally, a domain can be built from a GeometricObject instance, calling
the GeometricObject.asdomain() method.
Return an equivalent domain, whose polyhedra are disjoint.
"""
islset = self._toislset(self.polyhedra, self.symbols)
- islset = libisl.isl_set_make_disjoint(mainctx, islset)
+ islset = libisl.isl_set_make_disjoint(islset)
return self._fromislset(islset, self.symbols)
def coalesce(self):
vertices = islhelper.isl_vertices_vertices(vertices)
points = []
for vertex in vertices:
- expr = libisl.isl_vertex_get_expr(vertex)
+ expression = libisl.isl_vertex_get_expr(vertex)
coordinates = []
if self._RE_COORDINATE is None:
- constraints = islhelper.isl_basic_set_constraints(expr)
+ constraints = islhelper.isl_basic_set_constraints(expression)
for constraint in constraints:
constant = libisl.isl_constraint_get_constant_val(constraint)
constant = islhelper.isl_val_to_int(constant)
coordinate = -Fraction(constant, coefficient)
coordinates.append((symbol, coordinate))
else:
- string = islhelper.isl_multi_aff_to_str(expr)
+ string = islhelper.isl_multi_aff_to_str(expression)
matches = self._RE_COORDINATE.finditer(string)
for symbol, match in zip(self.symbols, matches):
numerator = int(match.group('num'))
strings = [repr(polyhedron) for polyhedron in self.polyhedra]
return 'Or({})'.format(', '.join(strings))
- def _repr_latex_(self):
- strings = []
- for polyhedron in self.polyhedra:
- strings.append('({})'.format(polyhedron._repr_latex_().strip('$')))
- return '${}$'.format(' \\vee '.join(strings))
-
@classmethod
- def fromsympy(cls, expr):
+ def fromsympy(cls, expression):
"""
Create a domain from a SymPy expression.
"""
sympy.Eq: Eq, sympy.Ne: Ne,
sympy.Ge: Ge, sympy.Gt: Gt,
}
- if expr.func in funcmap:
- args = [Domain.fromsympy(arg) for arg in expr.args]
- return funcmap[expr.func](*args)
- elif isinstance(expr, sympy.Expr):
- return LinExpr.fromsympy(expr)
- raise ValueError('non-domain expression: {!r}'.format(expr))
+ if expression.func in funcmap:
+ args = [Domain.fromsympy(arg) for arg in expression.args]
+ return funcmap[expression.func](*args)
+ elif isinstance(expression, sympy.Expr):
+ return LinExpr.fromsympy(expression)
+ raise ValueError('non-domain expression: {!r}'.format(expression))
def tosympy(self):
"""