from . import islhelper
from .islhelper import mainctx, libisl
-from .linexprs import LinExpr, Symbol, Rational
+from .linexprs import LinExpr, Symbol
from .geometry import GeometricObject, Point, Vector
class Domain(GeometricObject):
"""
A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
- computation of union and complementary operations.
+ computation of union, subtraction and complementary operations.
A domain with a unique polyhedron is automatically subclassed as a
Polyhedron instance.
"""
Return a domain from a sequence of polyhedra.
- >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
- >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
- >>> dom = Domain([square, square2])
+ >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+ >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
+ >>> dom = Domain(square1, square2)
+ >>> dom
+ Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y),
+ And(x <= 3, 1 <= x, y <= 3, 1 <= y))
It is also possible to build domains from polyhedra using arithmetic
- operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
- using one of the following instructions:
+ operators Domain.__or__(), Domain.__invert__() or functions Or() and
+ Not(), using one of the following instructions:
- >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
- >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
- >>> dom = square | square2
- >>> dom = Or(square, square2)
+ >>> dom = square1 | square2
+ >>> dom = Or(square1, square2)
Alternatively, a domain can be built from a string:
- >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
+ >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 1 <= x <= 3, 1 <= y <= 3')
Finally, a domain can be built from a GeometricObject instance, calling
the GeometricObject.asdomain() method.