_RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
def vertices(self):
+ #returning list of verticies
+ from .polyhedra import Polyhedron
islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
vertices = libisl.isl_basic_set_compute_vertices(islbset);
vertices = islhelper.isl_vertices_vertices(vertices)
- points = []
+ points = {}
+ num = 0
+ vertices_points = []
for vertex in vertices:
- expr = libisl.isl_vertex_get_expr(vertex);
if islhelper.isl_version < '0.13':
- string = islhelper.isl_set_to_str(expr)
- print(string)
- # to be continued...
+ expr = libisl.isl_vertex_get_expr(vertex)
+ constraints = islhelper.isl_basic_set_constraints(expr) #get bset constraints
+ for index, dim in enumerate(self.symbols):
+ for c in constraints: #for each constraint
+ constant = libisl.isl_constraint_get_constant_val(c) #get constant value
+ constant = islhelper.isl_val_to_int(constant)
+ coefficient = libisl.isl_constraint_get_coefficient_val(c,libisl.isl_dim_set, index)
+ coefficient = islhelper.isl_val_to_int(coefficient) #get coefficient
+ if coefficient != 0:
+ num = -Fraction(constant, coefficient)
+ points[dim]= float(num)
+ vertices_points.append(points.copy())
else:
- # horrible hack, find a cleaner solution
+ points = []
string = islhelper.isl_multi_aff_to_str(expr)
matches = self._RE_COORDINATE.finditer(string)
point = {}
coordinate = Fraction(numerator, denominator)
point[symbol] = coordinate
points.append(point)
- return points
-
+ return vertices_points
+
def points(self):
if not self.isbounded():
raise ValueError('domain must be bounded')
points.append(point)
return points
+ def subs(self, symbol, expression=None):
+ polyhedra = [polyhedron.subs(symbol, expression)
+ for polyhedron in self.polyhedra]
+ return Domain(*polyhedra)
+
@classmethod
def _fromislset(cls, islset, symbols):
from .polyhedra import Polyhedron
self._dimension = len(self._symbols)
return self
+ @classmethod
def _toislset(cls, polyhedra, symbols):
polyhedron = polyhedra[0]
islbset = polyhedron._toislbasicset(polyhedron.equalities,