+
+    def involves_vars(self, vars):
+        """
+        Returns true if a set depends on given dimensions.
+        """
+        islset = self._toislset(self.polyhedra, self.symbols)
+        dims = sorted(vars)
+        symbols = sorted(list(self.symbols))
+        n = 0
+        if len(dims)>0:
+            for dim in dims:
+                if dim in symbols:
+                    first = symbols.index(dims[0])
+                    n +=1
+                else:
+                    first = 0
+        else:
+            return False
+        value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n))
+        libisl.isl_set_free(islset)
+        return value
+
+    _RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
+
+    def vertices(self):
+        """
+        Return a list of vertices for this Polygon.
+        """
+        from .polyhedra import Polyhedron
+        if not self.isbounded():
+            raise ValueError('domain must be bounded')
+        islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
+        vertices = libisl.isl_basic_set_compute_vertices(islbset);
+        vertices = islhelper.isl_vertices_vertices(vertices)
+        points = []
+        for vertex in vertices:
+            expr = libisl.isl_vertex_get_expr(vertex)
+            coordinates = []
+            if islhelper.isl_version < '0.13':
+                constraints = islhelper.isl_basic_set_constraints(expr)
+                for constraint in constraints:
+                    constant = libisl.isl_constraint_get_constant_val(constraint)
+                    constant = islhelper.isl_val_to_int(constant)
+                    for index, symbol in enumerate(self.symbols):
+                        coefficient = libisl.isl_constraint_get_coefficient_val(constraint,
+                            libisl.isl_dim_set, index)
+                        coefficient = islhelper.isl_val_to_int(coefficient)
+                        if coefficient != 0:
+                            coordinate = -Fraction(constant, coefficient)
+                            coordinates.append((symbol, coordinate))
+            else:
+                string = islhelper.isl_multi_aff_to_str(expr)
+                matches = self._RE_COORDINATE.finditer(string)
+                for symbol, match in zip(self.symbols, matches):
+                    numerator = int(match.group('num'))
+                    denominator = match.group('den')
+                    denominator = 1 if denominator is None else int(denominator)
+                    coordinate = Fraction(numerator, denominator)
+                    coordinates.append((symbol, coordinate))
+            points.append(Point(coordinates))
+        return points
+
+    def points(self):
+        """
+        Returns the points contained in the set.
+        """
+        if not self.isbounded():
+            raise ValueError('domain must be bounded')
+        from .polyhedra import Universe, Eq
+        islset = self._toislset(self.polyhedra, self.symbols)
+        islpoints = islhelper.isl_set_points(islset)
+        points = []
+        for islpoint in islpoints:
+            coordinates = {}
+            for index, symbol in enumerate(self.symbols):
+                coordinate = libisl.isl_point_get_coordinate_val(islpoint,
+                    libisl.isl_dim_set, index)
+                coordinate = islhelper.isl_val_to_int(coordinate)
+                coordinates[symbol] = coordinate
+            points.append(Point(coordinates))
+        return points
+
+    @classmethod
+    def _polygon_inner_point(cls, points):
+        symbols = points[0].symbols
+        coordinates = {symbol: 0 for symbol in symbols}
+        for point in points:
+            for symbol, coordinate in point.coordinates():
+                coordinates[symbol] += coordinate
+        for symbol in symbols:
+            coordinates[symbol] /= len(points)
+        return Point(coordinates)
+
+    @classmethod
+    def _sort_polygon_2d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        angles = {}
+        for m in points:
+            om = Vector(o, m)
+            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
+            angle = math.atan2(dy, dx)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    @classmethod
+    def _sort_polygon_3d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        a = points[0]
+        oa = Vector(o, a)
+        norm_oa = oa.norm()
+        for b in points[1:]:
+            ob = Vector(o, b)
+            u = oa.cross(ob)
+            if not u.isnull():
+                u = u.asunit()
+                break
+        else:
+            raise ValueError('degenerate polygon')
+        angles = {a: 0.}
+        for m in points[1:]:
+            om = Vector(o, m)
+            normprod = norm_oa * om.norm()
+            cosinus = max(oa.dot(om) / normprod, -1.)
+            sinus = u.dot(oa.cross(om)) / normprod
+            angle = math.acos(cosinus)
+            angle = math.copysign(angle, sinus)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    def faces(self):
+        """
+        Returns the vertices of the faces of a polyhedra.
+        """
+        faces = []
+        for polyhedron in self.polyhedra:
+            vertices = polyhedron.vertices()
+            for constraint in polyhedron.constraints:
+                face = []
+                for vertex in vertices:
+                    if constraint.subs(vertex.coordinates()) == 0:
+                        face.append(vertex)
+                if len(face) >= 3:
+                    faces.append(face)
+        return faces
+
+    def _plot_2d(self, plot=None, **kwargs):
+        import matplotlib.pyplot as plt
+        from matplotlib.patches import Polygon
+        if plot is None:
+            fig = plt.figure()
+            plot = fig.add_subplot(1, 1, 1)
+        xmin, xmax = plot.get_xlim()
+        ymin, ymax = plot.get_ylim()
+        for polyhedron in self.polyhedra:
+            vertices = polyhedron._sort_polygon_2d(polyhedron.vertices())
+            xys = [tuple(vertex.values()) for vertex in vertices]
+            xs, ys = zip(*xys)
+            xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+            ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+            plot.add_patch(Polygon(xys, closed=True, **kwargs))
+        plot.set_xlim(xmin, xmax)
+        plot.set_ylim(ymin, ymax)
+        return plot
+
+    def _plot_3d(self, plot=None, **kwargs):
+        import matplotlib.pyplot as plt
+        from mpl_toolkits.mplot3d import Axes3D
+        from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+        if plot is None:
+            fig = plt.figure()
+            axes = Axes3D(fig)
+        else:
+            axes = plot
+        xmin, xmax = axes.get_xlim()
+        ymin, ymax = axes.get_ylim()
+        zmin, zmax = axes.get_zlim()
+        poly_xyzs = []
+        for vertices in self.faces():
+            vertices = self._sort_polygon_3d(vertices)
+            vertices.append(vertices[0])
+            face_xyzs = [tuple(vertex.values()) for vertex in vertices]
+            xs, ys, zs = zip(*face_xyzs)
+            xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+            ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+            zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
+            poly_xyzs.append(face_xyzs)
+        collection = Poly3DCollection(poly_xyzs, **kwargs)
+        axes.add_collection3d(collection)
+        axes.set_xlim(xmin, xmax)
+        axes.set_ylim(ymin, ymax)
+        axes.set_zlim(zmin, zmax)
+        return axes
+
+
+    def plot(self, plot=None, **kwargs):
+        """
+        Display plot of this set.
+        """
+        if not self.isbounded():
+            raise ValueError('domain must be bounded')
+        elif self.dimension == 2:
+            return self._plot_2d(plot=plot, **kwargs)
+        elif self.dimension == 3:
+            return self._plot_3d(plot=plot, **kwargs)
+        else:
+            raise ValueError('polyhedron must be 2 or 3-dimensional')
+
+    def __contains__(self, point):
+        for polyhedron in self.polyhedra:
+            if point in polyhedron:
+                return True
+        return False
+
+    def subs(self, symbol, expression=None):
+        """
+        Subsitute the given value into an expression and return the resulting
+        expression.
+        """
+        polyhedra = [polyhedron.subs(symbol, expression)
+            for polyhedron in self.polyhedra]
+        return Domain(*polyhedra)
+