def __rsub__(self, other):
return -(self - other)
- @_polymorphic
def __mul__(self, other):
- if isinstance(other, Rational):
- return other.__rmul__(self)
+ if isinstance(other, numbers.Rational):
+ coefficients = dict(self._coefficients)
+ for symbol in coefficients:
+ coefficients[symbol] *= other
+ constant = self._constant * other
+ return Expression(coefficients, constant)
return NotImplemented
__rmul__ = __mul__
- @_polymorphic
def __truediv__(self, other):
- if isinstance(other, Rational):
- return other.__rtruediv__(self)
+ if isinstance(other, numbers.Rational):
+ coefficients = dict(self._coefficients)
+ for symbol in coefficients:
+ coefficients[symbol] /= other
+ constant = self._constant / other
+ # import pdb; pdb.set_trace()
+ return Expression(coefficients, constant)
return NotImplemented
- __rtruediv__ = __truediv__
-
@_polymorphic
def __eq__(self, other):
# "normal" equality
string = ''
for i, (symbol, coefficient) in enumerate(self.coefficients()):
if coefficient == 1:
- string += '' if i == 0 else ' + '
- string += '{!r}'.format(symbol)
+ if i != 0:
+ string += ' + '
elif coefficient == -1:
string += '-' if i == 0 else ' - '
- string += '{!r}'.format(symbol)
+ elif i == 0:
+ string += '{}*'.format(coefficient)
+ elif coefficient > 0:
+ string += ' + {}*'.format(coefficient)
else:
- if i == 0:
- string += '{}*{!r}'.format(coefficient, symbol)
- elif coefficient > 0:
- string += ' + {}*{!r}'.format(coefficient, symbol)
- else:
- string += ' - {}*{!r}'.format(-coefficient, symbol)
+ string += ' - {}*'.format(-coefficient)
+ string += '{}'.format(symbol)
constant = self.constant
if len(string) == 0:
string += '{}'.format(constant)
string += ' - {}'.format(-constant)
return string
+ def _repr_latex_(self):
+ string = ''
+ for i, (symbol, coefficient) in enumerate(self.coefficients()):
+ if coefficient == 1:
+ if i != 0:
+ string += ' + '
+ elif coefficient == -1:
+ string += '-' if i == 0 else ' - '
+ elif i == 0:
+ string += '{}'.format(coefficient._repr_latex_().strip('$'))
+ elif coefficient > 0:
+ string += ' + {}'.format(coefficient._repr_latex_().strip('$'))
+ elif coefficient < 0:
+ string += ' - {}'.format((-coefficient)._repr_latex_().strip('$'))
+ string += '{}'.format(symbol._repr_latex_().strip('$'))
+ constant = self.constant
+ if len(string) == 0:
+ string += '{}'.format(constant._repr_latex_().strip('$'))
+ elif constant > 0:
+ string += ' + {}'.format(constant._repr_latex_().strip('$'))
+ elif constant < 0:
+ string += ' - {}'.format((-constant)._repr_latex_().strip('$'))
+ return '${}$'.format(string)
+
def _parenstr(self, always=False):
string = str(self)
if not always and (self.isconstant() or self.issymbol()):
raise TypeError('name must be a string')
self = object().__new__(cls)
self._name = name.strip()
- self._coefficients = {self: 1}
- self._constant = 0
+ self._coefficients = {self: Fraction(1)}
+ self._constant = Fraction(0)
self._symbols = (self,)
self._dimension = 1
return self
def __repr__(self):
return self.name
+ def _repr_latex_(self):
+ return '${}$'.format(self.name)
+
@classmethod
def fromsympy(cls, expr):
import sympy
self = object().__new__(cls)
self._index = Dummy._count
self._name = name.strip()
- self._coefficients = {self: 1}
- self._constant = 0
+ self._coefficients = {self: Fraction(1)}
+ self._constant = Fraction(0)
self._symbols = (self,)
self._dimension = 1
Dummy._count += 1
def __repr__(self):
return '_{}'.format(self.name)
+ def _repr_latex_(self):
+ return '${}_{{{}}}$'.format(self.name, self._index)
+
def symbols(names):
if isinstance(names, str):
def __bool__(self):
return Fraction.__bool__(self)
- @_polymorphic
- def __mul__(self, other):
- coefficients = dict(other._coefficients)
- for symbol in coefficients:
- coefficients[symbol] *= self._constant
- constant = other._constant * self._constant
- return Expression(coefficients, constant)
-
- __rmul__ = __mul__
-
- @_polymorphic
- def __rtruediv__(self, other):
- coefficients = dict(other._coefficients)
- for symbol in coefficients:
- coefficients[symbol] /= self._constant
- constant = other._constant / self._constant
- return Expression(coefficients, constant)
-
@classmethod
def fromstring(cls, string):
if not isinstance(string, str):
raise TypeError('string must be a string instance')
- return Rational(Fraction(string))
+ return Rational(string)
+
+ def __repr__(self):
+ if self.denominator == 1:
+ return '{!r}'.format(self.numerator)
+ else:
+ return '{!r}/{!r}'.format(self.numerator, self.denominator)
+
+ def _repr_latex_(self):
+ if self.denominator == 1:
+ return '${}$'.format(self.numerator)
+ elif self.numerator < 0:
+ return '$-\\frac{{{}}}{{{}}}$'.format(-self.numerator,
+ self.denominator)
+ else:
+ return '$\\frac{{{}}}{{{}}}$'.format(self.numerator,
+ self.denominator)
@classmethod
def fromsympy(cls, expr):