index 4d7d1f3..1ccbe9c 100644 (file)
@@ -37,8 +37,9 @@ __all__ = [
class Polyhedron(Domain):
"""
A convex polyhedron (or simply "polyhedron") is the space defined by a
-    system of linear equalities and inequalities. This space can be
-    unbounded.
+    system of linear equalities and inequalities. This space can be unbounded. A
+    Z-polyhedron (simply called "polyhedron" in LinPy) is the set of integer
+    points in a convex polyhedron.
"""

__slots__ = (
@@ -316,19 +317,11 @@ class Polyhedron(Domain):
else:
return 'And({})'.format(', '.join(strings))

-    def _repr_latex_(self):
-        strings = []
-        for equality in self.equalities:
-            strings.append('{} = 0'.format(equality._repr_latex_().strip('\$')))
-        for inequality in self.inequalities:
-            strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('\$')))
-        return '\$\${}\$\$'.format(' \\wedge '.join(strings))
-
@classmethod
-    def fromsympy(cls, expr):
-        domain = Domain.fromsympy(expr)
+    def fromsympy(cls, expression):
+        domain = Domain.fromsympy(expression)
if not isinstance(domain, Polyhedron):
-            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+            raise ValueError('non-polyhedral expression: {!r}'.format(expression))
return domain

def tosympy(self):
@@ -362,9 +355,6 @@ class EmptyType(Polyhedron):
def __repr__(self):
return 'Empty'

-    def _repr_latex_(self):
-        return '\$\$\\emptyset\$\$'
-
Empty = EmptyType()

@@ -385,83 +375,80 @@ class UniverseType(Polyhedron):
def __repr__(self):
return 'Universe'

-    def _repr_latex_(self):
-        return '\$\$\\Omega\$\$'
-
Universe = UniverseType()

def _pseudoconstructor(func):
@functools.wraps(func)
-    def wrapper(expr1, expr2, *exprs):
-        exprs = (expr1, expr2) + exprs
-        for expr in exprs:
-            if not isinstance(expr, LinExpr):
-                if isinstance(expr, numbers.Rational):
-                    expr = Rational(expr)
+    def wrapper(expression1, expression2, *expressions):
+        expressions = (expression1, expression2) + expressions
+        for expression in expressions:
+            if not isinstance(expression, LinExpr):
+                if isinstance(expression, numbers.Rational):
+                    expression = Rational(expression)
else:
raise TypeError('arguments must be rational numbers '
'or linear expressions')
-        return func(*exprs)
+        return func(*expressions)
return wrapper

@_pseudoconstructor
-def Lt(*exprs):
+def Lt(*expressions):
"""
Create the polyhedron with constraints expr1 < expr2 < expr3 ...
"""
inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
inequalities.append(right - left - 1)
return Polyhedron([], inequalities)

@_pseudoconstructor
-def Le(*exprs):
+def Le(*expressions):
"""
Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
"""
inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
inequalities.append(right - left)
return Polyhedron([], inequalities)

@_pseudoconstructor
-def Eq(*exprs):
+def Eq(*expressions):
"""
Create the polyhedron with constraints expr1 == expr2 == expr3 ...
"""
equalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
equalities.append(left - right)
return Polyhedron(equalities, [])

@_pseudoconstructor
-def Ne(*exprs):
+def Ne(*expressions):
"""
Create the domain such that expr1 != expr2 != expr3 ... The result is a
Domain object, not a Polyhedron.
"""
domain = Universe
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
domain &= ~Eq(left, right)
return domain

@_pseudoconstructor
-def Ge(*exprs):
+def Ge(*expressions):
"""
Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
"""
inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
inequalities.append(left - right)
return Polyhedron([], inequalities)

@_pseudoconstructor
-def Gt(*exprs):
+def Gt(*expressions):
"""
Create the polyhedron with constraints expr1 > expr2 > expr3 ...
"""
inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
inequalities.append(left - right - 1)
return Polyhedron([], inequalities)