@_polymorphic_method
def __add__(self, other):
coefficients = dict(self.coefficients())
- for symbol, coefficient in other.coefficients:
+ for symbol, coefficient in other.coefficients():
if symbol in coefficients:
coefficients[symbol] += coefficient
else:
@_polymorphic_method
def __sub__(self, other):
coefficients = dict(self.coefficients())
- for symbol, coefficient in other.coefficients:
+ for symbol, coefficient in other.coefficients():
if symbol in coefficients:
coefficients[symbol] -= coefficient
else:
def __hash__(self):
return hash((self._coefficients, self._constant))
- def _canonify(self):
+ def _toint(self):
lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
return self * lcm
@_polymorphic_method
def _eq(self, other):
- return Polyhedron(equalities=[(self - other)._canonify()])
+ return Polyhedron(equalities=[(self - other)._toint()])
@_polymorphic_method
def __le__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify()])
+ return Polyhedron(inequalities=[(other - self)._toint()])
@_polymorphic_method
def __lt__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify() - 1])
+ return Polyhedron(inequalities=[(other - self)._toint() - 1])
@_polymorphic_method
def __ge__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify()])
+ return Polyhedron(inequalities=[(self - other)._toint()])
@_polymorphic_method
def __gt__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify() - 1])
+ return Polyhedron(inequalities=[(self - other)._toint() - 1])
def constant(numerator=0, denominator=None):
def inequalities(self):
return self._inequalities
- @property
- def constant(self):
- return self._constant
-
- def isconstant(self):
- return len(self._coefficients) == 0
-
- def isempty(self):
- return bool(libisl.isl_basic_set_is_empty(self._bset))
-
@property
def constraints(self):
return self._constraints
raise NotImplementedError
def isempty(self):
- return self == empty
+ bset = self._to_isl()
+ return bool(libisl.isl_basic_set_is_empty(bset))
def isuniverse(self):
- return self == universe
+ raise NotImplementedError
def isdisjoint(self, other):
# return true if the polyhedron has no elements in common with other
return bset
@classmethod
- def from_isl(cls, bset):
+ def _from_isl(cls, bset):
'''takes basic set in isl form and puts back into python version of polyhedron
isl example code gives isl form as:
"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
p = Polyhedron(inequalities=[ex1, ex2])
bs = p._to_isl()
print(bs)
+ print('empty ?', p.isempty())
+ print('empty ?', eq(0, 1).isempty())