import functools
import numbers
-import json
-import ctypes, ctypes.util
-from pypol import isl
from fractions import Fraction, gcd
-libisl = ctypes.CDLL(ctypes.util.find_library('isl'))
+from pypol import isl
+from pypol.isl import libisl
-libisl.isl_printer_get_str.restype = ctypes.c_char_p
__all__ = [
- 'Expression',
- 'constant', 'symbol', 'symbols',
+ 'Expression', 'Constant', 'Symbol', 'symbols',
'eq', 'le', 'lt', 'ge', 'gt',
'Polyhedron',
- 'empty', 'universe'
+ 'Empty', 'Universe'
]
-'''
-def symbolToInt(self):
- make dictionary of key:value (letter:integer)
- iterate through the dictionary to find matching symbol
- return the given integer value
- d = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 6, 'j': 10, 'k': 11, 'l': 12, 'm': 13, 'n': 14,
- 'o': 15, 'p': 16, 'q': 17, 'r': 18, 's': 19, 't': 20, 'u': 21, 'v': 22, 'w': 23, 'x': 24, 'y': 25, 'z': 26}
- if self in d:
- num = d.get(self)
- return num
-'''
-
-ids = {}
-
-def get_ids(co):
- if co in ids:
- return ids.get(co)
- else:
- idd = len(ids)
- ids[co] = idd
- print(ids)
- return idd
def _polymorphic_method(func):
@functools.wraps(func)
if isinstance(b, Expression):
return func(a, b)
if isinstance(b, numbers.Rational):
- b = constant(b)
+ b = Constant(b)
return func(a, b)
return NotImplemented
return wrapper
@functools.wraps(func)
def wrapper(a, b):
if isinstance(a, numbers.Rational):
- a = constant(a)
+ a = Constant(a)
return func(a, b)
elif isinstance(a, Expression):
return func(a, b)
raise TypeError('arguments must be linear expressions')
return wrapper
-class Context:
-
- __slots__ = ('_ic')
-
- def __init__(self):
- self._ic = libisl.isl_ctx_alloc()
-
- @property
- def _as_parameter_(self):
- return self._ic
-
- #comment out so does not delete itself after being created
- #def __del__(self):
- # libisl.isl_ctx_free(self)
-
- def __eq__(self, other):
- if not isinstance(other, Context):
- return False
- return self._ic == other._ic
-
+_main_ctx = isl.Context()
class Expression:
if constant:
raise TypeError('too many arguments')
return cls.fromstring(coefficients)
- self = super().__new__(cls)
- self._coefficients = {}
if isinstance(coefficients, dict):
coefficients = coefficients.items()
- if coefficients is not None:
- for symbol, coefficient in coefficients:
- if isinstance(symbol, Expression) and symbol.issymbol():
- symbol = str(symbol)
- elif not isinstance(symbol, str):
- raise TypeError('symbols must be strings')
- if not isinstance(coefficient, numbers.Rational):
- raise TypeError('coefficients must be rational numbers')
- if coefficient != 0:
- self._coefficients[symbol] = coefficient
+ if coefficients is None:
+ return Constant(constant)
+ coefficients = [(symbol, coefficient)
+ for symbol, coefficient in coefficients if coefficient != 0]
+ if len(coefficients) == 0:
+ return Constant(constant)
+ elif len(coefficients) == 1 and constant == 0:
+ symbol, coefficient = coefficients[0]
+ if coefficient == 1:
+ return Symbol(symbol)
+ self = object().__new__(cls)
+ self._coefficients = {}
+ for symbol, coefficient in coefficients:
+ if isinstance(symbol, Symbol):
+ symbol = symbol.name
+ elif not isinstance(symbol, str):
+ raise TypeError('symbols must be strings or Symbol instances')
+ if isinstance(coefficient, Constant):
+ coefficient = coefficient.constant
+ if not isinstance(coefficient, numbers.Rational):
+ raise TypeError('coefficients must be rational numbers or Constant instances')
+ self._coefficients[symbol] = coefficient
+ if isinstance(constant, Constant):
+ constant = constant.constant
if not isinstance(constant, numbers.Rational):
- raise TypeError('constant must be a rational number')
+ raise TypeError('constant must be a rational number or a Constant instance')
self._constant = constant
+ self._symbols = tuple(sorted(self._coefficients))
+ self._dimension = len(self._symbols)
return self
+ @classmethod
+ def fromstring(cls, string):
+ raise NotImplementedError
+ @property
def symbols(self):
- yield from sorted(self._coefficients)
+ return self._symbols
@property
def dimension(self):
- return len(list(self.symbols()))
+ return self._dimension
def coefficient(self, symbol):
- if isinstance(symbol, Expression) and symbol.issymbol():
+ if isinstance(symbol, Symbol):
symbol = str(symbol)
elif not isinstance(symbol, str):
- raise TypeError('symbol must be a string')
+ raise TypeError('symbol must be a string or a Symbol instance')
try:
return self._coefficients[symbol]
except KeyError:
__getitem__ = coefficient
def coefficients(self):
- for symbol in self.symbols():
+ for symbol in self.symbols:
yield symbol, self.coefficient(symbol)
@property
return self._constant
def isconstant(self):
- return len(self._coefficients) == 0
+ return False
def values(self):
- for symbol in self.symbols():
+ for symbol in self.symbols:
yield self.coefficient(symbol)
yield self.constant
- def values_int(self):
- for symbol in self.symbols():
- return self.coefficient(symbol)
- return int(self.constant)
-
-
- def symbol(self):
- if not self.issymbol():
- raise ValueError('not a symbol: {}'.format(self))
- for symbol in self.symbols():
- return symbol
-
def issymbol(self):
- return len(self._coefficients) == 1 and self._constant == 0
+ return False
def __bool__(self):
- return (not self.isconstant()) or bool(self.constant)
+ return True
def __pos__(self):
return self
def __rsub__(self, other):
return -(self - other)
-
+
@_polymorphic_method
def __mul__(self, other):
if other.isconstant():
def __str__(self):
string = ''
- symbols = sorted(self.symbols())
i = 0
- for symbol in symbols:
- coefficient = self[symbol]
+ for symbol in self.symbols:
+ coefficient = self.coefficient(symbol)
if coefficient == 1:
if i == 0:
string += symbol
string += '}}, {!r})'.format(self.constant)
return string
- @classmethod
- def fromstring(cls, string):
- raise NotImplementedError
-
@_polymorphic_method
def __eq__(self, other):
# "normal" equality
self.constant == other.constant
def __hash__(self):
- return hash((self._coefficients, self._constant))
+ return hash((tuple(sorted(self._coefficients.items())), self._constant))
- def _canonify(self):
+ def _toint(self):
lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
return self * lcm
@_polymorphic_method
def _eq(self, other):
- return Polyhedron(equalities=[(self - other)._canonify()])
+ return Polyhedron(equalities=[(self - other)._toint()])
@_polymorphic_method
def __le__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify()])
+ return Polyhedron(inequalities=[(other - self)._toint()])
@_polymorphic_method
def __lt__(self, other):
- return Polyhedron(inequalities=[(self - other)._canonify() + 1])
+ return Polyhedron(inequalities=[(other - self)._toint() - 1])
@_polymorphic_method
def __ge__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify()])
+ return Polyhedron(inequalities=[(self - other)._toint()])
@_polymorphic_method
def __gt__(self, other):
- return Polyhedron(inequalities=[(other - self)._canonify() + 1])
+ return Polyhedron(inequalities=[(self - other)._toint() - 1])
+
+
+class Constant(Expression):
+
+ def __new__(cls, numerator=0, denominator=None):
+ self = object().__new__(cls)
+ if denominator is None:
+ if isinstance(numerator, numbers.Rational):
+ self._constant = numerator
+ elif isinstance(numerator, Constant):
+ self._constant = numerator.constant
+ else:
+ raise TypeError('constant must be a rational number or a Constant instance')
+ else:
+ self._constant = Fraction(numerator, denominator)
+ self._coefficients = {}
+ self._symbols = ()
+ self._dimension = 0
+ return self
+
+ def isconstant(self):
+ return True
+
+ def __bool__(self):
+ return bool(self.constant)
+ def __repr__(self):
+ return '{}({!r})'.format(self.__class__.__name__, self._constant)
+
+
+class Symbol(Expression):
+
+ def __new__(cls, name):
+ if isinstance(name, Symbol):
+ name = name.name
+ elif not isinstance(name, str):
+ raise TypeError('name must be a string or a Symbol instance')
+ self = object().__new__(cls)
+ self._coefficients = {name: 1}
+ self._constant = 0
+ self._symbols = tuple(name)
+ self._name = name
+ self._dimension = 1
+ return self
-def constant(numerator=0, denominator=None):
- if denominator is None and isinstance(numerator, numbers.Rational):
- return Expression(constant=3)
- else:
- return Expression(constant=Fraction(numerator, denominator))
+ @property
+ def name(self):
+ return self._name
-def symbol(name):
- if not isinstance(name, str):
- raise TypeError('name must be a string')
- return Expression(coefficients={name: 1})
+ def issymbol(self):
+ return True
+
+ def __repr__(self):
+ return '{}({!r})'.format(self.__class__.__name__, self._name)
def symbols(names):
if isinstance(names, str):
names = names.replace(',', ' ').split()
- return (symbol(name) for name in names)
+ return (Symbol(name) for name in names)
@_polymorphic_operator
def eq(a, b):
- return a._eq(b)
+ return a.__eq__(b)
@_polymorphic_operator
def le(a, b):
- return a <= b
+ return a.__le__(b)
@_polymorphic_operator
def lt(a, b):
- return a < b
+ return a.__lt__(b)
@_polymorphic_operator
def ge(a, b):
- return a >= b
+ return a.__ge__(b)
@_polymorphic_operator
def gt(a, b):
- return a > b
+ return a.__gt__(b)
class Polyhedron:
raise TypeError('non-integer constraint: '
'{} == 0'.format(constraint))
self._equalities.append(constraint)
+ self._equalities = tuple(self._equalities)
self._inequalities = []
if inequalities is not None:
for constraint in inequalities:
if value.denominator != 1:
raise TypeError('non-integer constraint: '
'{} <= 0'.format(constraint))
- self._inequalities.append(constraint)
- self._bset = self.to_isl()
- #print(self._bset)
- #put this here just to test from isl method
- #from_isl = self.from_isl(self._bset)
- #print(from_isl)
- #rint(self)
- return self._bset
-
-
+ self._inequalities.append(constraint)
+ self._inequalities = tuple(self._inequalities)
+ self._constraints = self._equalities + self._inequalities
+ self._symbols = set()
+ for constraint in self._constraints:
+ self.symbols.update(constraint.symbols)
+ self._symbols = tuple(sorted(self._symbols))
+ return self
+
+ @classmethod
+ def fromstring(cls, string):
+ raise NotImplementedError
+
@property
def equalities(self):
- yield from self._equalities
+ return self._equalities
@property
def inequalities(self):
- yield from self._inequalities
-
- @property
- def constant(self):
- return self._constant
-
- def isconstant(self):
- return len(self._coefficients) == 0
-
-
- def isempty(self):
- return bool(libisl.isl_basic_set_is_empty(self._bset))
+ return self._inequalities
+ @property
def constraints(self):
- yield from self.equalities
- yield from self.inequalities
-
+ return self._constraints
+ @property
def symbols(self):
- s = set()
- for constraint in self.constraints():
- s.update(constraint.symbols)
- yield from sorted(s)
-
+ return self._symbols
+
@property
def dimension(self):
- return len(self.symbols())
+ return len(self.symbols)
def __bool__(self):
- # return false if the polyhedron is empty, true otherwise
- if self._equalities or self._inequalities:
- return False
- else:
- return True
-
+ return not self.is_empty()
def __contains__(self, value):
# is the value in the polyhedron?
raise NotImplementedError
def __eq__(self, other):
- raise NotImplementedError
+ # works correctly when symbols is not passed
+ # should be equal if values are the same even if symbols are different
+ bset = self._toisl()
+ other = other._toisl()
+ return bool(libisl.isl_basic_set_plain_is_equal(bset, other))
- def is_empty(self):
- return
+ def isempty(self):
+ bset = self._toisl()
+ return bool(libisl.isl_basic_set_is_empty(bset))
def isuniverse(self):
- return self == universe
+ bset = self._toisl()
+ return bool(libisl.isl_basic_set_is_universe(bset))
def isdisjoint(self, other):
# return true if the polyhedron has no elements in common with other
- raise NotImplementedError
+ #symbols = self._symbolunion(other)
+ bset = self._toisl()
+ other = other._toisl()
+ return bool(libisl.isl_set_is_disjoint(bset, other))
def issubset(self, other):
- raise NotImplementedError
+ # check if self(bset) is a subset of other
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ return bool(libisl.isl_set_is_strict_subset(other, bset))
def __le__(self, other):
return self.issubset(other)
def __lt__(self, other):
- raise NotImplementedError
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ return bool(libisl.isl_set_is_strict_subset(other, bset))
def issuperset(self, other):
# test whether every element in other is in the polyhedron
- for value in other:
- if value == self.constraints():
- return True
- else:
- return False
raise NotImplementedError
def __ge__(self, other):
return self.issuperset(other)
def __gt__(self, other):
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ bool(libisl.isl_set_is_strict_subset(other, bset))
raise NotImplementedError
def union(self, *others):
def __and__(self, other):
return self.intersection(other)
- def difference(self, *others):
- # return a new polyhedron with elements in the polyhedron that are not
- # in the others
- raise NotImplementedError
+ def difference(self, other):
+ # return a new polyhedron with elements in the polyhedron that are not in the other
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ difference = libisl.isl_set_subtract(bset, other)
+ return difference
def __sub__(self, other):
return self.difference(other)
for constraint in self.equalities:
constraints.append('{} == 0'.format(constraint))
for constraint in self.inequalities:
- constraints.append('{} <= 0'.format(constraint))
+ constraints.append('{} >= 0'.format(constraint))
return '{{{}}}'.format(', '.join(constraints))
def __repr__(self):
- equalities = list(self.equalities)
- inequalities = list(self.inequalities)
- return '{}(equalities={!r}, inequalities={!r})' \
- ''.format(self.__class__.__name__, equalities, inequalities)
+ if self.isempty():
+ return 'Empty'
+ elif self.isuniverse():
+ return 'Universe'
+ else:
+ equalities = list(self.equalities)
+ inequalities = list(self.inequalities)
+ return '{}(equalities={!r}, inequalities={!r})' \
+ ''.format(self.__class__.__name__, equalities, inequalities)
+
+ def _symbolunion(self, *others):
+ symbols = set(self.symbols)
+ for other in others:
+ symbols.update(other.symbols)
+ return sorted(symbols)
+
+ def _toisl(self, symbols=None):
+ if symbols is None:
+ symbols = self.symbols
+ dimension = len(symbols)
+ space = libisl.isl_space_set_alloc(_main_ctx, 0, dimension)
+ bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
+ ls = libisl.isl_local_space_from_space(space)
+ for equality in self.equalities:
+ ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
+ for symbol, coefficient in equality.coefficients():
+ val = str(coefficient).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ dim = symbols.index(symbol)
+ ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, dim, val)
+ if equality.constant != 0:
+ val = str(equality.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ ceq = libisl.isl_constraint_set_constant_val(ceq, val)
+ bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+ for inequality in self.inequalities:
+ cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
+ for symbol, coefficient in inequality.coefficients():
+ val = str(coefficient).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ dim = symbols.index(symbol)
+ cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, dim, val)
+ if inequality.constant != 0:
+ val = str(ineq.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ cin = libisl.isl_constraint_set_constant_val(cin, val)
+ bset = libisl.isl_basic_set_add_constraint(bset, cin)
+ bset = isl.BasicSet(bset)
+ return bset
@classmethod
- def fromstring(cls, string):
+ def _fromisl(cls, bset):
raise NotImplementedError
-
- def to_isl(self):
- #d = Expression().__dict__ #write expression values to dictionary in form {'_constant': value, '_coefficients': value}
- d = {'_constant': 2, '_coefficients': {'b':1}}
- coeff = d.get('_coefficients')
- num_coefficients = len(coeff)
- space = libisl.isl_space_set_alloc(Context(), 0, num_coefficients)
- bset = libisl.isl_basic_set_empty(libisl.isl_space_copy(space))
- ls = libisl.isl_local_space_from_space(libisl.isl_space_copy(space))
- ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
- cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
- '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set
- need to change the symbols method to a lookup table for the integer value for each letter that could be a symbol'''
- if self._equalities:
- if '_constant' in d:
- value = d.get('_constant')
- ceq = libisl.isl_constraint_set_constant_si(ceq, value)
- if '_coefficients' in d:
- value_co = d.get('_coefficients')
- for co in value_co:
- num = value_co.get(co)
- ceq = libisl.isl_constraint_set_coefficient_si(ceq, 3, get_ids(co), num) #use 3 for type isl_dim_set
- bset = libisl.isl_set_add_constraint(bset, ceq)
-
- if self._inequalities:
- if '_constant' in d:
- value = d.get('_constant')
- cin = libisl.isl_constraint_set_constant_si(cin, value)
- if '_coefficients' in d:
- value_co = d.get('_coefficients')
- for co in value_co:
- num = value_co.get(co)
- if value_co: #if dictionary not empty add coefficient as to constraint
- cin = libisl.isl_constraint_set_coefficient_si(cin, 3, get_ids(co), num) #use 3 for type isl_dim_set
- bset = libisl.isl_set_add_constraint(bset, cin)
- ip = libisl.isl_printer_to_str(Context()) #create string printer
- ip = libisl.isl_printer_print_set(ip, bset) #print set to printer
- string = libisl.isl_printer_get_str(ip) #get string from printer
- string = str(string)
- print(string)
- return string
-
-
- def from_isl(self, bset):
- '''takes basic set in isl form and puts back into python version of polyhedron
- isl example code gives idl form as:
- "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");'''
-
- poly = 0
- return poly
-
-empty = eq(1,1)
-
-
-universe = Polyhedron()
+ equalities = ...
+ inequalities = ...
+ return cls(equalities, inequalities)
+ '''takes basic set in isl form and puts back into python version of polyhedron
+ isl example code gives isl form as:
+ "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
+ our printer is giving form as:
+ { [i0, i1] : 2i1 >= -2 - i0 } '''
+
+Empty = eq(0,1)
+Universe = Polyhedron()
+
+if __name__ == '__main__':
+ e1 = Expression(coefficients={'a': 2, 'b': 2}, constant= 1)
+ p1 = Polyhedron(equalities=[e1]) # empty
+ e2 = Expression(coefficients={'x': 3, 'y': 2}, constant= 3)
+ p2 = Polyhedron(equalities=[e2]) # not empty
+ print(p1._toisl())
+ print(p2._toisl())