Update drop_dims, now works with more than 2 dims passed
[linpy.git] / pypol / tests / test_domains.py
index 17e20fd..55853fd 100644 (file)
@@ -1,9 +1,8 @@
 import unittest
 
-from pypol import *
-#from ..domains import *
-#from ..linexprs import symbols
-#from ..polyhedra import *
+from ..domains import *
+from ..linexprs import symbols
+from ..polyhedra import *
 
 
 class TestDomain(unittest.TestCase):
@@ -13,15 +12,16 @@ class TestDomain(unittest.TestCase):
         self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y])
         self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
         self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
-        self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y]) 
+        self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
         self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
         self.square6 = Polyhedron(equalities=[3 - y], inequalities=[x - 1, 3 - x, y - 1])
         self.unbound_poly = Polyhedron(inequalities=[x, 3 - x, y])
         self.universe = Polyhedron([])
         self.empty = Empty
         self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
-        self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+        self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
         self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+        self.dropped = And(Ge(y, 0), Ge(-y + 2, 0))
         self.sample = And(Eq(y - 3, 0), Eq(x - 1, 0))
         self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
         self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
@@ -31,14 +31,14 @@ class TestDomain(unittest.TestCase):
         self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
         self.lexmin = And(Eq(y, 0), Eq(x, 0))
         self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0))
-        
+
     def test_new(self):
         with self.assertRaises(TypeError):
-            Polyhedron(1)    
+            Polyhedron(1)
 
     def test_disjoint(self):
         self.assertEqual(self.square1.disjoint(), self.disjoint)
-        
+
     def test_isempty(self):
         self.assertFalse(self.square1.isempty())
         self.assertTrue(self.empty.isempty())
@@ -52,65 +52,70 @@ class TestDomain(unittest.TestCase):
         self.assertFalse(self.unbound_poly.isbounded())
 
     def test_eq(self):
-        self.assertTrue(self.square1.__eq__(self.square1))
-        self.assertFalse(self.square1.__eq__(self.square2))
-    
+        self.assertTrue(self.square1 == self.square1)
+        self.assertFalse(self.square1 == self.square2)
+
     def test_isdisjoint(self):
         self.assertFalse(self.square1.isdisjoint(self.square2))
         self.assertTrue(self.square1.isdisjoint(self.square5))
-    
+
     def test_issubset(self):
         self.assertTrue(self.square4.issubset(self.unbound_poly))
         self.assertFalse(self.square1.issubset(self.square2))
-    
+
     def test_le(self):
-        self.assertTrue(self.square4.__le__(self.square3))
-        self.assertFalse(self.square3.__le__(self.square4))
-    
+        self.assertTrue(self.square4 <= self.square3)
+        self.assertFalse(self.square3 <= self.square4)
+
     def test_lt(self):
-        self.assertTrue(self.square4.__lt__(self.square3))
-        self.assertFalse(self.square3.__lt__(self.square4))
-          
-    def test_compliment(self):
-        self.assertEqual(~self.square1, self.compliment)
-    
+        self.assertTrue(self.square4 < self.square3)
+        self.assertFalse(self.square3 < self.square4)
+
+    def test_complement(self):
+        self.assertEqual(~self.square1, self.complement)
+
     def test_polyhedral_hull(self):
         self.assertEqual(self.square1.polyhedral_hull(), self.hull)
-    
+
+    def test_project_out(self):
+        self.assertEqual(self.square1.project_out('x'), self.dropped)
+        self.assertEqual(self.square1.project_out('x y'), self.universe)
+        self.assertEqual(self.universe.project_out(' '), self.universe)
+        self.assertEqual(self.empty.project_out(' '), Empty)
+
     def test_simplify(self):
         self.assertEqual(self.universe.simplify(), self.universe)
         self.assertEqual(self.empty.simplify(), Empty)
-    
+
     def test_sample(self):
         self.assertEqual(self.empty.sample(), Empty)
         self.assertEqual(self.universe.sample(), self.universe)
         self.assertEqual(self.square6.sample(), self.sample)
-    
+
     def test_intersection(self):
         self.assertEqual(self.square1.intersection(self.square2), self.intersection)
-    
+
     def test_and(self):
-        self.assertEqual(self.square2 & self.square1, self.intersection)      
-    
+        self.assertEqual(self.square2 & self.square1, self.intersection)
+
     def test_union(self):
         self.assertEqual(self.square1.union(self.square2), self.union)
-    
+
     def test_or(self):
-        self.assertEqual(self.square1.__or__(self.square2), self.union)       
-    
+        self.assertEqual(self.square1 | self.square2, self.union)
+
     def test_add(self):
-        self.assertEqual(self.square2.__add__(self.square1), self.sum1)
+        self.assertEqual(self.square2 + self.square1, self.sum1)
         self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2)
-    
+
     def test_difference(self):
         self.assertEqual(self.square2 - self.square1, self.difference1)
         self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
         self.assertEqual(self.square2 - self.square2, Empty)
         self.assertEqual(self.universe - self.universe, Empty)
-    
+
     def test_lexmin(self):
         self.assertEqual(self.square1.lexmin(), self.lexmin)
 
     def test_lexmax(self):
         self.assertEqual(self.square1.lexmax(), self.lexmax)
-