from pypol import *
-x, y = symbols('x y')
+a, x, y, z = symbols('a x y z')
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
-
sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
-sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
+sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
u = Polyhedron([])
x = sq1 - sq2
print('sq4 =', sq4) #print correct square
print('u =', u) #print correct square
print()
-print('¬sq1 =', ~sq1) #test compliment
+print('¬sq1 =', ~sq1) #test complement
print()
print('sq1 + sq1 =', sq1 + sq2) #test addition
print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
print()
print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
print()
-print('sq1 disjoint:', sq1.disjoint()) #make disjoint
+print('sq1 disjoint:', sq1.disjoint()) #make disjoint
print('sq2 disjoint:', sq2.disjoint()) #make disjoint
print()
print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same
+print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same
#value as Polyhedron(sq1 + sq2)
print()
print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
print()
print('sq6:', sq6)
print('sq6 simplified:', sq6.sample())
-
+print()
+#print(u.drop_dims(' '))
+print('sq7 with out constraints involving y and a', sq7.drop_dims('y a')) #drops dims that are passed