Improved example menger.py
[linpy.git] / pypol / domains.py
index a924b83..be9dd4b 100644 (file)
@@ -1,11 +1,14 @@
 import ast
 import functools
 import re
 import ast
 import functools
 import re
+import math
 
 
-from . import islhelper
+from fractions import Fraction
 
 
-from .islhelper import mainctx, libisl, isl_set_basic_sets
-from .linexprs import Expression, Symbol
+from . import islhelper
+from .islhelper import mainctx, libisl
+from .linexprs import Expression, Symbol, Rational
+from .geometry import GeometricObject, Point, Vector
 
 
 __all__ = [
 
 
 __all__ = [
@@ -15,7 +18,7 @@ __all__ = [
 
 
 @functools.total_ordering
 
 
 @functools.total_ordering
-class Domain:
+class Domain(GeometricObject):
 
     __slots__ = (
         '_polyhedra',
 
     __slots__ = (
         '_polyhedra',
@@ -26,14 +29,14 @@ class Domain:
     def __new__(cls, *polyhedra):
         from .polyhedra import Polyhedron
         if len(polyhedra) == 1:
     def __new__(cls, *polyhedra):
         from .polyhedra import Polyhedron
         if len(polyhedra) == 1:
-            polyhedron = polyhedra[0]
-            if isinstance(polyhedron, str):
-                return cls.fromstring(polyhedron)
-            elif isinstance(polyhedron, Polyhedron):
-                return polyhedron
+            argument = polyhedra[0]
+            if isinstance(argument, str):
+                return cls.fromstring(argument)
+            elif isinstance(argument, GeometricObject):
+                return argument.aspolyhedron()
             else:
                 raise TypeError('argument must be a string '
             else:
                 raise TypeError('argument must be a string '
-                    'or a Polyhedron instance')
+                    'or a GeometricObject instance')
         else:
             for polyhedron in polyhedra:
                 if not isinstance(polyhedron, Polyhedron):
         else:
             for polyhedron in polyhedra:
                 if not isinstance(polyhedron, Polyhedron):
@@ -65,11 +68,17 @@ class Domain:
         return self._dimension
 
     def disjoint(self):
         return self._dimension
 
     def disjoint(self):
+        """
+        Returns this set as disjoint.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_make_disjoint(mainctx, islset)
         return self._fromislset(islset, self.symbols)
 
     def isempty(self):
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_make_disjoint(mainctx, islset)
         return self._fromislset(islset, self.symbols)
 
     def isempty(self):
+        """
+        Returns true if this set is an Empty set.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         empty = bool(libisl.isl_set_is_empty(islset))
         libisl.isl_set_free(islset)
         islset = self._toislset(self.polyhedra, self.symbols)
         empty = bool(libisl.isl_set_is_empty(islset))
         libisl.isl_set_free(islset)
@@ -79,18 +88,27 @@ class Domain:
         return not self.isempty()
 
     def isuniverse(self):
         return not self.isempty()
 
     def isuniverse(self):
+        """
+        Returns true if this set is the Universe set.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         universe = bool(libisl.isl_set_plain_is_universe(islset))
         libisl.isl_set_free(islset)
         return universe
 
     def isbounded(self):
         islset = self._toislset(self.polyhedra, self.symbols)
         universe = bool(libisl.isl_set_plain_is_universe(islset))
         libisl.isl_set_free(islset)
         return universe
 
     def isbounded(self):
+        """
+        Returns true if this set is bounded.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         bounded = bool(libisl.isl_set_is_bounded(islset))
         libisl.isl_set_free(islset)
         return bounded
 
     def __eq__(self, other):
         islset = self._toislset(self.polyhedra, self.symbols)
         bounded = bool(libisl.isl_set_is_bounded(islset))
         libisl.isl_set_free(islset)
         return bounded
 
     def __eq__(self, other):
+        """
+        Returns true if two sets are equal.
+        """
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = other._toislset(other.polyhedra, symbols)
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = other._toislset(other.polyhedra, symbols)
@@ -100,6 +118,9 @@ class Domain:
         return equal
 
     def isdisjoint(self, other):
         return equal
 
     def isdisjoint(self, other):
+        """
+        Return True if two sets have a null intersection.
+        """
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
@@ -109,6 +130,9 @@ class Domain:
         return equal
 
     def issubset(self, other):
         return equal
 
     def issubset(self, other):
+        """
+        Report whether another set contains this set.
+        """
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
@@ -118,9 +142,15 @@ class Domain:
         return equal
 
     def __le__(self, other):
         return equal
 
     def __le__(self, other):
+        """
+        Returns true if this set is less than or equal to another set.
+        """
         return self.issubset(other)
 
     def __lt__(self, other):
         return self.issubset(other)
 
     def __lt__(self, other):
+        """
+        Returns true if this set is less than another set.
+        """
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = self._toislset(other.polyhedra, symbols)
@@ -130,30 +160,43 @@ class Domain:
         return equal
 
     def complement(self):
         return equal
 
     def complement(self):
+        """
+        Returns the complement of this set.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_complement(islset)
         return self._fromislset(islset, self.symbols)
 
     def __invert__(self):
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_complement(islset)
         return self._fromislset(islset, self.symbols)
 
     def __invert__(self):
+        """
+        Returns the complement of this set.
+        """
         return self.complement()
 
     def simplify(self):
         return self.complement()
 
     def simplify(self):
-        #does not change anything in any of the examples
-        #isl seems to do this naturally
+        """
+        Returns a set without redundant constraints.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_remove_redundancies(islset)
         return self._fromislset(islset, self.symbols)
 
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_remove_redundancies(islset)
         return self._fromislset(islset, self.symbols)
 
-    def polyhedral_hull(self):
-        # several types of hull are available
-        # polyhedral seems to be the more appropriate, to be checked
+    def aspolyhedron(self):
+        """
+        Returns polyhedral hull of set.
+        """
         from .polyhedra import Polyhedron
         islset = self._toislset(self.polyhedra, self.symbols)
         islbset = libisl.isl_set_polyhedral_hull(islset)
         return Polyhedron._fromislbasicset(islbset, self.symbols)
 
         from .polyhedra import Polyhedron
         islset = self._toislset(self.polyhedra, self.symbols)
         islbset = libisl.isl_set_polyhedral_hull(islset)
         return Polyhedron._fromislbasicset(islbset, self.symbols)
 
-    def project_out(self, dims):
-        # use to remove certain variables
+    def asdomain(self):
+        return self
+
+    def project(self, dims):
+        """
+        Return new set with given dimensions removed.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         n = 0
         for index, symbol in reversed(list(enumerate(self.symbols))):
         islset = self._toislset(self.polyhedra, self.symbols)
         n = 0
         for index, symbol in reversed(list(enumerate(self.symbols))):
@@ -168,14 +211,27 @@ class Domain:
         return Domain._fromislset(islset, dims)
 
     def sample(self):
         return Domain._fromislset(islset, dims)
 
     def sample(self):
-        from .polyhedra import Polyhedron
+        """
+        Returns a single subset of the input.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = self._toislset(self.polyhedra, self.symbols)
-        islbset = libisl.isl_set_sample(islset)
-        # next instruction should NOT be required
-        islbset = libisl.isl_basic_set_finalize(islbset)
-        return Polyhedron._fromislbasicset(islbset, self.symbols)
+        islpoint = libisl.isl_set_sample_point(islset)
+        if bool(libisl.isl_point_is_void(islpoint)):
+            libisl.isl_point_free(islpoint)
+            raise ValueError('domain must be non-empty')
+        point = {}
+        for index, symbol in enumerate(self.symbols):
+            coordinate = libisl.isl_point_get_coordinate_val(islpoint,
+                libisl.isl_dim_set, index)
+            coordinate = islhelper.isl_val_to_int(coordinate)
+            point[symbol] = coordinate
+        libisl.isl_point_free(islpoint)
+        return point
 
     def intersection(self, *others):
 
     def intersection(self, *others):
+        """
+         Return the intersection of two sets as a new set.
+        """
         if len(others) == 0:
             return self
         symbols = self._xsymbols((self,) + others)
         if len(others) == 0:
             return self
         symbols = self._xsymbols((self,) + others)
@@ -186,9 +242,15 @@ class Domain:
         return self._fromislset(islset1, symbols)
 
     def __and__(self, other):
         return self._fromislset(islset1, symbols)
 
     def __and__(self, other):
+        """
+         Return the intersection of two sets as a new set.
+        """
         return self.intersection(other)
 
     def union(self, *others):
         return self.intersection(other)
 
     def union(self, *others):
+        """
+        Return the union of sets as a new set.
+        """
         if len(others) == 0:
             return self
         symbols = self._xsymbols((self,) + others)
         if len(others) == 0:
             return self
         symbols = self._xsymbols((self,) + others)
@@ -199,12 +261,21 @@ class Domain:
         return self._fromislset(islset1, symbols)
 
     def __or__(self, other):
         return self._fromislset(islset1, symbols)
 
     def __or__(self, other):
+        """
+        Return a new set with elements from both sets.
+        """
         return self.union(other)
 
     def __add__(self, other):
         return self.union(other)
 
     def __add__(self, other):
+        """
+        Return new set containing all elements in both sets.
+        """
         return self.union(other)
 
     def difference(self, other):
         return self.union(other)
 
     def difference(self, other):
+        """
+        Return the difference of two sets as a new set.
+        """
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = other._toislset(other.polyhedra, symbols)
         symbols = self._xsymbols([self, other])
         islset1 = self._toislset(self.polyhedra, symbols)
         islset2 = other._toislset(other.polyhedra, symbols)
@@ -212,26 +283,39 @@ class Domain:
         return self._fromislset(islset, symbols)
 
     def __sub__(self, other):
         return self._fromislset(islset, symbols)
 
     def __sub__(self, other):
+        """
+        Return the difference of two sets as a new set.
+        """
         return self.difference(other)
 
     def lexmin(self):
         return self.difference(other)
 
     def lexmin(self):
+        """
+        Return a new set containing the lexicographic minimum of the elements in the set.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_lexmin(islset)
         return self._fromislset(islset, self.symbols)
 
     def lexmax(self):
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_lexmin(islset)
         return self._fromislset(islset, self.symbols)
 
     def lexmax(self):
+        """
+        Return a new set containing the lexicographic maximum of the elements in the set.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_lexmax(islset)
         return self._fromislset(islset, self.symbols)
 
     def num_parameters(self):
         islset = self._toislset(self.polyhedra, self.symbols)
         islset = libisl.isl_set_lexmax(islset)
         return self._fromislset(islset, self.symbols)
 
     def num_parameters(self):
-        #could be useful with large, complicated polyhedrons
+        """
+        Return the total number of parameters, input, output or set dimensions.
+        """
         islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
         num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
         return num
 
     def involves_dims(self, dims):
         islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
         num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
         return num
 
     def involves_dims(self, dims):
-        #could be useful with large, complicated polyhedrons
+        """
+        Returns true if set depends on given dimensions.
+        """
         islset = self._toislset(self.polyhedra, self.symbols)
         dims = sorted(dims)
         symbols = sorted(list(self.symbols))
         islset = self._toislset(self.polyhedra, self.symbols)
         dims = sorted(dims)
         symbols = sorted(list(self.symbols))
@@ -249,40 +333,205 @@ class Domain:
         libisl.isl_set_free(islset)
         return value
 
         libisl.isl_set_free(islset)
         return value
 
+    _RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
+
     def vertices(self):
     def vertices(self):
+        """
+        Return a list of vertices for this Polygon.
+        """
+        from .polyhedra import Polyhedron
         islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
         vertices = libisl.isl_basic_set_compute_vertices(islbset);
         vertices = islhelper.isl_vertices_vertices(vertices)
         islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
         vertices = libisl.isl_basic_set_compute_vertices(islbset);
         vertices = islhelper.isl_vertices_vertices(vertices)
+        points = []
         for vertex in vertices:
         for vertex in vertices:
-            expr = libisl.isl_vertex_get_expr(vertex);
+            expr = libisl.isl_vertex_get_expr(vertex)
+            coordinates = []
             if islhelper.isl_version < '0.13':
             if islhelper.isl_version < '0.13':
-                string = islhelper.isl_set_to_str(expr)
+                constraints = islhelper.isl_basic_set_constraints(expr)
+                for constraint in constraints:
+                    constant = libisl.isl_constraint_get_constant_val(constraint)
+                    constant = islhelper.isl_val_to_int(constant)
+                    for index, symbol in enumerate(self.symbols):
+                        coefficient = libisl.isl_constraint_get_coefficient_val(constraint,
+                            libisl.isl_dim_set, index)
+                        coefficient = islhelper.isl_val_to_int(coefficient)
+                        if coefficient != 0:
+                            coordinate = -Fraction(constant, coefficient)
+                            coordinates.append((symbol, coordinate))
             else:
                 string = islhelper.isl_multi_aff_to_str(expr)
             else:
                 string = islhelper.isl_multi_aff_to_str(expr)
-            print(string)
+                matches = self._RE_COORDINATE.finditer(string)
+                for symbol, match in zip(self.symbols, matches):
+                    numerator = int(match.group('num'))
+                    denominator = match.group('den')
+                    denominator = 1 if denominator is None else int(denominator)
+                    coordinate = Fraction(numerator, denominator)
+                    coordinates.append((symbol, coordinate))
+            points.append(Point(coordinates))
+        return points
 
     def points(self):
 
     def points(self):
+        """
+        Returns the points contained in the set.
+        """
         if not self.isbounded():
         if not self.isbounded():
-            raise ValueError('domain must be unbounded')
+            raise ValueError('domain must be bounded')
         from .polyhedra import Universe, Eq
         islset = self._toislset(self.polyhedra, self.symbols)
         islpoints = islhelper.isl_set_points(islset)
         points = []
         for islpoint in islpoints:
         from .polyhedra import Universe, Eq
         islset = self._toislset(self.polyhedra, self.symbols)
         islpoints = islhelper.isl_set_points(islset)
         points = []
         for islpoint in islpoints:
-            point = {}
+            coordinates = {}
             for index, symbol in enumerate(self.symbols):
                 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
                     libisl.isl_dim_set, index)
                 coordinate = islhelper.isl_val_to_int(coordinate)
             for index, symbol in enumerate(self.symbols):
                 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
                     libisl.isl_dim_set, index)
                 coordinate = islhelper.isl_val_to_int(coordinate)
-                point[symbol] = coordinate
-            points.append(point)
+                coordinates[symbol] = coordinate
+            points.append(Point(coordinates))
         return points
 
         return points
 
+    @classmethod
+    def _polygon_inner_point(cls, points):
+        symbols = points[0].symbols
+        coordinates = {symbol: 0 for symbol in symbols}
+        for point in points:
+            for symbol, coordinate in point.coordinates():
+                coordinates[symbol] += coordinate
+        for symbol in symbols:
+            coordinates[symbol] /= len(points)
+        return Point(coordinates)
+
+    @classmethod
+    def _sort_polygon_2d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        angles = {}
+        for m in points:
+            om = Vector(o, m)
+            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
+            angle = math.atan2(dy, dx)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    @classmethod
+    def _sort_polygon_3d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        a = points[0]
+        oa = Vector(o, a)
+        norm_oa = oa.norm()
+        for b in points[1:]:
+            ob = Vector(o, b)
+            u = oa.cross(ob)
+            if not u.isnull():
+                u = u.asunit()
+                break
+        else:
+            raise ValueError('degenerate polygon')
+        angles = {a: 0.}
+        for m in points[1:]:
+            om = Vector(o, m)
+            normprod = norm_oa * om.norm()
+            cosinus = max(oa.dot(om) / normprod, -1.)
+            sinus = u.dot(oa.cross(om)) / normprod
+            angle = math.acos(cosinus)
+            angle = math.copysign(angle, sinus)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    def faces(self):
+        faces = []
+        for polyhedron in self.polyhedra:
+            vertices = polyhedron.vertices()
+            for constraint in polyhedron.constraints:
+                face = []
+                for vertex in vertices:
+                    if constraint.subs(vertex.coordinates()) == 0:
+                        face.append(vertex)
+                if len(face) >= 3:
+                    faces.append(face)
+        return faces
+
+    def _plot_2d(self, plot=None, **kwargs):
+        import matplotlib.pyplot as plt
+        from matplotlib.patches import Polygon
+        if plot is None:
+            fig = plt.figure()
+            plot = fig.add_subplot(1, 1, 1)
+        xmin, xmax = plot.get_xlim()
+        ymin, ymax = plot.get_ylim()
+        for polyhedron in self.polyhedra:
+            vertices = polyhedron._sort_polygon_2d(polyhedron.vertices())
+            xys = [tuple(vertex.values()) for vertex in vertices]
+            xs, ys = zip(*xys)
+            xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+            ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+            plot.add_patch(Polygon(xys, closed=True, **kwargs))
+        plot.set_xlim(xmin, xmax)
+        plot.set_ylim(ymin, ymax)
+        return plot
+
+    def _plot_3d(self, plot=None, **kwargs):
+        import matplotlib.pyplot as plt
+        from mpl_toolkits.mplot3d import Axes3D
+        from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+        if plot is None:
+            fig = plt.figure()
+            axes = Axes3D(fig)
+        else:
+            axes = plot
+        xmin, xmax = axes.get_xlim()
+        ymin, ymax = axes.get_ylim()
+        zmin, zmax = axes.get_zlim()
+        poly_xyzs = []
+        for vertices in self.faces():
+            vertices = self._sort_polygon_3d(vertices)
+            vertices.append(vertices[0])
+            face_xyzs = [tuple(vertex.values()) for vertex in vertices]
+            xs, ys, zs = zip(*face_xyzs)
+            xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+            ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+            zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
+            poly_xyzs.append(face_xyzs)
+        collection = Poly3DCollection(poly_xyzs, **kwargs)
+        axes.add_collection3d(collection)
+        axes.set_xlim(xmin, xmax)
+        axes.set_ylim(ymin, ymax)
+        axes.set_zlim(zmin, zmax)
+        return axes
+
+    def plot(self, plot=None, **kwargs):
+        """
+        Display plot of this set.
+        """
+        if not self.isbounded():
+            raise ValueError('domain must be bounded')
+        elif self.dimension == 2:
+            return self._plot_2d(plot=plot, **kwargs)
+        elif self.dimension == 3:
+            return self._plot_3d(plot=plot, **kwargs)
+        else:
+            raise ValueError('polyhedron must be 2 or 3-dimensional')
+
+    def __contains__(self, point):
+        for polyhedron in self.polyhedra:
+            if point in polyhedron:
+                return True
+        return False
+
+    def subs(self, symbol, expression=None):
+        polyhedra = [polyhedron.subs(symbol, expression)
+            for polyhedron in self.polyhedra]
+        return Domain(*polyhedra)
+
     @classmethod
     def _fromislset(cls, islset, symbols):
         from .polyhedra import Polyhedron
         islset = libisl.isl_set_remove_divs(islset)
     @classmethod
     def _fromislset(cls, islset, symbols):
         from .polyhedra import Polyhedron
         islset = libisl.isl_set_remove_divs(islset)
-        islbsets = isl_set_basic_sets(islset)
+        islbsets = islhelper.isl_set_basic_sets(islset)
         libisl.isl_set_free(islset)
         polyhedra = []
         for islbset in islbsets:
         libisl.isl_set_free(islset)
         polyhedra = []
         for islbset in islbsets:
@@ -300,6 +549,7 @@ class Domain:
             self._dimension = len(self._symbols)
             return self
 
             self._dimension = len(self._symbols)
             return self
 
+    @classmethod
     def _toislset(cls, polyhedra, symbols):
         polyhedron = polyhedra[0]
         islbset = polyhedron._toislbasicset(polyhedron.equalities,
     def _toislset(cls, polyhedra, symbols):
         polyhedron = polyhedra[0]
         islbset = polyhedron._toislbasicset(polyhedron.equalities,
@@ -389,6 +639,12 @@ class Domain:
         strings = [repr(polyhedron) for polyhedron in self.polyhedra]
         return 'Or({})'.format(', '.join(strings))
 
         strings = [repr(polyhedron) for polyhedron in self.polyhedra]
         return 'Or({})'.format(', '.join(strings))
 
+    def _repr_latex_(self):
+        strings = []
+        for polyhedron in self.polyhedra:
+            strings.append('({})'.format(polyhedron._repr_latex_().strip('$')))
+        return '${}$'.format(' \\vee '.join(strings))
+
     @classmethod
     def fromsympy(cls, expr):
         import sympy
     @classmethod
     def fromsympy(cls, expr):
         import sympy
@@ -413,6 +669,9 @@ class Domain:
 
 
 def And(*domains):
 
 
 def And(*domains):
+    """
+    Return the intersection of two sets as a new set.
+    """
     if len(domains) == 0:
         from .polyhedra import Universe
         return Universe
     if len(domains) == 0:
         from .polyhedra import Universe
         return Universe
@@ -420,6 +679,9 @@ def And(*domains):
         return domains[0].intersection(*domains[1:])
 
 def Or(*domains):
         return domains[0].intersection(*domains[1:])
 
 def Or(*domains):
+    """
+    Return the union of sets as a new set.
+    """
     if len(domains) == 0:
         from .polyhedra import Empty
         return Empty
     if len(domains) == 0:
         from .polyhedra import Empty
         return Empty
@@ -427,4 +689,7 @@ def Or(*domains):
         return domains[0].union(*domains[1:])
 
 def Not(domain):
         return domains[0].union(*domains[1:])
 
 def Not(domain):
+    """
+    Returns the complement of this set.
+    """
     return ~domain
     return ~domain