index 9b55a03..b13a22e 100644 (file)
@@ -24,31 +24,32 @@ Then, we can build the :class:`Polyhedron` object ``square1`` from its constrain

>>> square1 = Le(0, x, 2) & Le(0, y, 2)
>>> square1

>>> square1 = Le(0, x, 2) & Le(0, y, 2)
>>> square1
-And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+And(0 <= x, x <= 2, 0 <= y, y <= 2)

LinPy provides comparison functions :func:`Lt`, :func:`Le`, :func:`Eq`, :func:`Ne`, :func:`Ge` and :func:`Gt` to build constraints, and logical operators :func:`And`, :func:`Or`, :func:`Not` to combine them.
Alternatively, a polyhedron can be built from a string:

>>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
>>> square2

LinPy provides comparison functions :func:`Lt`, :func:`Le`, :func:`Eq`, :func:`Ne`, :func:`Ge` and :func:`Gt` to build constraints, and logical operators :func:`And`, :func:`Or`, :func:`Not` to combine them.
Alternatively, a polyhedron can be built from a string:

>>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
>>> square2
-And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))
+And(1 <= x, x <= 3, 1 <= y, y <= 3)

The usual polyhedral operations are available, including intersection:

The usual polyhedral operations are available, including intersection:

->>> inter = square1.intersection(square2)
+>>> inter = square1.intersection(square2) # or square1 & square2
>>> inter
>>> inter
-And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
+And(1 <= x, x <= 2, 1 <= y, y <= 2)

convex union:

>>> hull = square1.convex_union(square2)
>>> hull

convex union:

>>> hull = square1.convex_union(square2)
>>> hull
-And(Ge(x, 0), Ge(y, 0), Ge(-x + y + 2, 0), Ge(x - y + 2, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
+And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3)

and projection:

and projection:

->>> square1.project([y])
-And(Ge(x, 0), Ge(-x + 2, 0))
+>>> proj = square1.project([y])
+>>> proj
+And(0 <= x, x <= 2)

Equality and inclusion tests are also provided.
Special values :data:`Empty` and :data:`Universe` represent the empty and universe polyhedra.

Equality and inclusion tests are also provided.
Special values :data:`Empty` and :data:`Universe` represent the empty and universe polyhedra.
@@ -68,19 +69,19 @@ LinPy is also able to manipulate polyhedral *domains*, that is, unions of polyhe
An example of domain is the set union (as opposed to convex union) of polyhedra ``square1`` and ``square2``.
The result is a :class:`Domain` object.

An example of domain is the set union (as opposed to convex union) of polyhedra ``square1`` and ``square2``.
The result is a :class:`Domain` object.

->>> union = square1 | square2
+>>> union = square1.union(square2) # or square1 | square2
>>> union
>>> union
-Or(And(Ge(-x + 2, 0), Ge(x, 0), Ge(-y + 2, 0), Ge(y, 0)), And(Ge(-x + 3, 0), Ge(x - 1, 0), Ge(-y + 3, 0), Ge(y - 1, 0)))
+Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 3, 1 <= x, y <= 3, 1 <= y))
>>> union <= hull
True

Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations.

>>> union <= hull
True

Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations.

->>> diff = square1 - square2
+>>> diff = square1.difference(square2) # or square1 - square2
>>> diff
>>> diff
-Or(And(Eq(x, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Eq(y, 0), Ge(x - 1, 0), Ge(-x + 2, 0)))
+Or(And(x == 0, 0 <= y, y <= 2), And(y == 0, 1 <= x, x <= 2))
>>> ~square1
>>> ~square1
-Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+Or(x + 1 <= 0, 3 <= x, And(0 <= x, x <= 2, y + 1 <= 0), And(0 <= x, x <= 2, 3 <= y))

.. _tutorial_plot:

.. _tutorial_plot: