def aspolyhedron(self):
return self
+ def convex_union(self, *others):
+ """
+ Return the convex union of two or more polyhedra.
+ """
+ for other in others:
+ if not isinstance(other, Polyhedron):
+ raise TypeError('arguments must be Polyhedron instances')
+ return Polyhedron(self.union(*others))
+
def __contains__(self, point):
if not isinstance(point, Point):
raise TypeError('point must be a Point instance')
for inequality in self.inequalities]
return Polyhedron(equalities, inequalities)
- def _asinequalities(self):
+ def asinequalities(self):
+ """
+ Express the polyhedron using inequalities, given as a list of
+ expressions greater or equal to 0.
+ """
inequalities = list(self.equalities)
inequalities.extend([-expression for expression in self.equalities])
inequalities.extend(self.inequalities)
def widen(self, other):
"""
Compute the standard widening of two polyhedra, à la Halbwachs.
+
+ In its current implementation, this method is slow and should not be
+ used on large polyhedra.
"""
if not isinstance(other, Polyhedron):
- raise ValueError('argument must be a Polyhedron instance')
- inequalities1 = self._asinequalities()
- inequalities2 = other._asinequalities()
+ raise TypeError('argument must be a Polyhedron instance')
+ inequalities1 = self.asinequalities()
+ inequalities2 = other.asinequalities()
inequalities = []
for inequality1 in inequalities1:
if other <= Polyhedron(inequalities=[inequality1]):
The empty polyhedron, whose set of constraints is not satisfiable.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = (Rational(1),)
i.e. is empty.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = ()
return ~Eq(left, right)
@_polymorphic
-def Gt(left, right):
+def Ge(left, right):
"""
- Create the polyhedron with constraints expr1 > expr2 > expr3 ...
+ Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
"""
- return Polyhedron([], [left - right - 1])
+ return Polyhedron([], [left - right])
@_polymorphic
-def Ge(left, right):
+def Gt(left, right):
"""
- Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
+ Create the polyhedron with constraints expr1 > expr2 > expr3 ...
"""
- return Polyhedron([], [left - right])
+ return Polyhedron([], [left - right - 1])