x, y = symbols('x y')
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
-sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
+sq2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
-print('sq1 =', sq1)
-print('sq2 =', sq2)
+sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
+sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
+sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+u = Polyhedron([])
+
+print('sq1 =', sq1) #print correct square
+print('sq2 =', sq2) #print correct square
+print('sq3 =', sq3) #print correct square
+print('sq4 =', sq4) #print correct square
+print('u =', u) #print correct square
+print()
+print('¬sq1 =', ~sq1) #test compliment
+print()
+print('sq1 + sq1 =', sq1 + sq2) #test addition
+print('sq1 + sq2 =', Polyhedron(sq1 + sq2))
+print('sq1 - sq1 =', u - u)
+print('sq2 - sq1 =', sq2 - sq1) #test subtraction
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1))
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test polyhedreon
+print()
+print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
+print('sq1 ∪ sq2 =', sq1 | sq2) #test union
+print()
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #test convex union
+print()
+print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
+print()
+print('sq1 disjoint:', sq1.disjoint()) #make disjoint
+print('sq2 disjoint:', sq2.disjoint()) #make disjoint
+print()
+print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
+print('is u universe?:', u.isuniverse()) #test if square is universe
print()
-print('¬sq1 =', ~sq1)
+print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset()
+print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset
print()
-print('sq1 - sq2 =', sq1 - sq2)
-print('sq1 - sq2 =', Polyhedron(sq1 - sq2))
+print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
+print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
+print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('sq1 ∩ sq2 =', sq1 & sq2)
-print('sq1 ∪ sq2 =', sq1 | sq2)
+print('Polyhedral hull of sq1 is:', sq1.polyhedral_hull())
print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2))
+print('is sq1 bounded?', sq1.isbounded())
+print('is sq5 bounded?', sq5.isbounded())
import unittest
-from ..domains import *
+from pypol import *
+#from ..domains import *
+#from ..linexprs import symbols
+#from ..polyhedra import *
class TestDomain(unittest.TestCase):
def setUp(self):
+ x, y = symbols('x y')
+ self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y])
+ self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
+ self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
+ self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
+ self.square5 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
+ self.square6 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.universe = Polyhedron([])
+ self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+ self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
+ self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+ self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+ self.sum2 =And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
+ self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)), And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0)))
+ self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
+ self.lexmin = And(Eq(y, 0), Eq(x, 0))
+ self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0))
+
+ def test_new(self):
+ with self.assertRaises(TypeError):
+ Polyhedron(1)
+
+ def test_disjoint(self):
+ self.assertEqual(self.square1.disjoint(), self.disjoint)
+
+ def test_isempty(self):
+ self.assertFalse(self.square1.isempty())
+
+ def test_isuniverse(self):
+ self.assertFalse(self.square1.isuniverse())
+ self.assertTrue(self.universe.isuniverse())
+
+ def test_isbounded(self):
+ self.assertTrue(self.square1.isbounded())
+
+ def test_eq(self):
+ self.assertTrue(self.square3.__eq__(self.square5))
+ self.assertTrue(self.square1.__eq__(self.square1))
+ self.assertFalse(self.square1.__eq__(self.square2))
+
+ def test_isdisjoint(self):
+ self.assertFalse(self.square1.isdisjoint(self.square2))
+ self.assertTrue(self.square1.isdisjoint(self.square6))
+
+ def test_issubset(self):
+ self.assertTrue(self.square4.issubset(self.square5))
+ self.assertFalse(self.square1.issubset(self.square2))
+
+ def test_le(self):
+ self.assertTrue(self.square4.__lt__(self.square3))
+
+ def test_lt(self):
+ self.assertTrue(self.square4.__le__(self.square3))
+
+ def test_compliment(self):
+ self.assertEqual(~self.square1, self.compliment)
+
+ def test_simplify(self):
+ #maybe wont need this method
+ pass
+
+ def test_polyhedral_hull(self):
+ self.assertEqual(self.square1.polyhedral_hull(), self.hull)
+
+ def test_project(self):
+ #maybe wont need this method
pass
+
+ def test_sample(self):
+ pass
+
+ def test_intersection(self):
+ self.assertEqual(self.square1.intersection(self.square2), self.intersection)
+
+ def test_and(self):
+ self.assertEqual(self.square2 & self.square1, self.intersection)
+
+ def test_union(self):
+ self.assertEqual(self.square1.union(self.square2), self.union)
+
+ def test_or(self):
+ self.assertEqual(self.square1.__or__(self.square2), self.union)
+
+ def test_add(self):
+ self.assertEqual(self.square2.__add__(self.square1), self.sum1)
+ self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2)
+
+ def test_difference(self):
+ self.assertEqual(self.square2 - self.square1, self.difference1)
+ self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
+
+ def test_lexmin(self):
+ self.assertEqual(self.square1.lexmin(), self.lexmin)
+
+ def test_lexmax(self):
+ self.assertEqual(self.square1.lexmax(), self.lexmax)
+
+
- def test_new(self):
pass
+