--- /dev/null
+/build/
+/dist/
+/MANIFEST
+__pycache__
--- /dev/null
+PYTHON=python3
+RM=rm -rf
+
+.PHONY: default
+default:
+ @echo "pypol - A polyhedral library based on ISL"
+ @echo
+ @echo "Makefile usage:"
+ @echo " make test run the test suite"
+ @echo " make clean remove the generated files"
+
+.PHONY: test
+test:
+ $(PYTHON) -m unittest
+
+.PHONY: clean
+clean:
+ $(RM) build dist MANIFEST pypol/__pycache__ tests/__pycache__
--- /dev/null
+
+"""
+A polyhedral library based on ISL.
+"""
+
+from .linear import constant, symbol, symbols
+from .linear import eq, le, lt, ge, gt
+from .linear import empty, universe
+
+
+__all__ = [
+ 'constant', 'symbol', 'symbols',
+ 'eq', 'le', 'lt', 'ge', 'gt',
+ 'empty', 'universe'
+]
--- /dev/null
+
+import ctypes, ctypes.util
+import math
+import numbers
+import operator
+import re
+
+from decimal import Decimal
+from fractions import Fraction
+from functools import wraps
+
+
+libisl = ctypes.CDLL(ctypes.util.find_library('isl'))
+
+libisl.isl_printer_get_str.restype = ctypes.c_char_p
+
+
+class Context:
+
+ __slots__ = ('_ic')
+
+ def __init__(self):
+ self._ic = libisl.isl_ctx_alloc()
+
+ @property
+ def _as_parameter_(self):
+ return self._ic
+
+ def __del__(self):
+ libisl.isl_ctx_free(self)
+
+ def __eq__(self, other):
+ if not isinstance(other, Context):
+ return False
+ return self._ic == other._ic
+
+
+class Value:
+
+ class _ptr(int):
+ def __new__(cls, iv):
+ return super().__new__(cls, iv)
+ def __repr__(self):
+ return '{}({})'.format(self.__class__.__name__, self)
+
+ _RE_NONFINITE = re.compile(
+ r'^\s*(?P<sign>[-+])?((?P<inf>Inf(inity)?)|(?P<nan>NaN))\s*$',
+ re.IGNORECASE)
+
+ _RE_FRACTION = re.compile(r'^(?P<num>[-+]?\d+)(/(?P<den>\d+))?$')
+
+ __slots__ = ('context', '_iv', '_numerator', '_denominator')
+
+ def __new__(cls, context, numerator=0, denominator=None):
+ self = super().__new__(cls)
+ if not isinstance(context, Context):
+ raise TypeError('first argument should be a context')
+ self.context = context
+ if isinstance(numerator, cls._ptr):
+ assert denominator is None
+ self._iv = numerator
+ if libisl.isl_val_is_rat(self):
+ # retrieve numerator and denominator as strings to avoid integer
+ # overflows
+ ip = libisl.isl_printer_to_str(self.context)
+ ip = libisl.isl_printer_print_val(ip, self)
+ string = libisl.isl_printer_get_str(ip).decode()
+ libisl.isl_printer_free(ip)
+ m = self._RE_FRACTION.match(string)
+ assert m is not None
+ self._numerator = int(m.group('num'))
+ self._denominator = int(m.group('den')) if m.group('den') else 1
+ else:
+ self._numerator = None
+ self._denominator = None
+ return self
+ if isinstance(numerator, str) and denominator is None:
+ m = self._RE_NONFINITE.match(numerator)
+ if m is not None:
+ self._numerator = None
+ self._denominator = None
+ if m.group('inf'):
+ if m.group('sign') == '-':
+ self._iv = libisl.isl_val_neginfty(context)
+ else:
+ self._iv = libisl.isl_val_infty(context)
+ else:
+ assert m.group('nan')
+ self._iv = libisl.isl_val_nan(context)
+ return self
+ try:
+ frac = Fraction(numerator, denominator)
+ except ValueError:
+ raise ValueError('invalid literal for {}: {!r}'.format(
+ cls.__name__, numerator))
+ self._numerator = frac.numerator
+ self._denominator = frac.denominator
+ # values passed as strings to avoid integer overflows
+ if frac.denominator == 1:
+ numerator = str(frac.numerator).encode()
+ self._iv = libisl.isl_val_read_from_str(context, numerator)
+ else:
+ numerator = str(frac.numerator).encode()
+ numerator = libisl.isl_val_read_from_str(context, numerator)
+ denominator = str(frac.denominator).encode()
+ denominator = libisl.isl_val_read_from_str(context, denominator)
+ self._iv = libisl.isl_val_div(numerator, denominator)
+ return self
+
+ @property
+ def _as_parameter_(self):
+ return self._iv
+
+ def __del__(self):
+ libisl.isl_val_free(self)
+ self.context # prevents context from being GC'ed before the value
+
+ @property
+ def numerator(self):
+ if self._numerator is None:
+ raise ValueError('not a rational number')
+ return self._numerator
+
+ @property
+ def denominator(self):
+ if self._denominator is None:
+ raise ValueError('not a rational number')
+ return self._denominator
+
+ def __bool__(self):
+ return not bool(libisl.isl_val_is_zero(self))
+
+ def _polymorphic(func):
+ @wraps(func)
+ def wrapper(self, other):
+ if isinstance(other, Value):
+ return func(self, other)
+ if isinstance(other, numbers.Rational):
+ other = Value(self.context, other)
+ return func(self, other)
+ raise TypeError('operand should be a Value or a Rational')
+ return wrapper
+
+ @_polymorphic
+ def __lt__(self, other):
+ return bool(libisl.isl_val_lt(self, other))
+
+ @_polymorphic
+ def __le__(self, other):
+ return bool(libisl.isl_val_le(self, other))
+
+ @_polymorphic
+ def __gt__(self, other):
+ return bool(libisl.isl_val_gt(self, other))
+
+ @_polymorphic
+ def __ge__(self, other):
+ return bool(libisl.isl_val_ge(self, other))
+
+ @_polymorphic
+ def __eq__(self, other):
+ return bool(libisl.isl_val_eq(self, other))
+
+ # __ne__ is not implemented, ISL semantics does not match Python's on
+ # nan != nan
+
+ def __abs__(self):
+ val = libisl.isl_val_copy(self)
+ val = libisl.isl_val_abs(val)
+ return self.__class__(self.context, self._ptr(val))
+
+ def __pos__(self):
+ return self
+
+ def __neg__(self):
+ val = libisl.isl_val_copy(self)
+ val = libisl.isl_val_neg(val)
+ return self.__class__(self.context, self._ptr(val))
+
+ def __floor__(self):
+ val = libisl.isl_val_copy(self)
+ val = libisl.isl_val_floor(val)
+ return self.__class__(self.context, self._ptr(val))
+
+ def __ceil__(self):
+ val = libisl.isl_val_copy(self)
+ val = libisl.isl_val_ceil(val)
+ return self.__class__(self.context, self._ptr(val))
+
+ def __trunc__(self):
+ val = libisl.isl_val_copy(self)
+ val = libisl.isl_val_trunc(val)
+ return self.__class__(self.context, self._ptr(val))
+
+ @_polymorphic
+ def __add__(self, other):
+ val1 = libisl.isl_val_copy(self)
+ val2 = libisl.isl_val_copy(other)
+ val = libisl.isl_val_add(val1, val2)
+ return self.__class__(self.context, self._ptr(val))
+
+ __radd__ = __add__
+
+ @_polymorphic
+ def __sub__(self, other):
+ val1 = libisl.isl_val_copy(self)
+ val2 = libisl.isl_val_copy(other)
+ val = libisl.isl_val_sub(val1, val2)
+ return self.__class__(self.context, self._ptr(val))
+
+ __rsub__ = __sub__
+
+ @_polymorphic
+ def __mul__(self, other):
+ val1 = libisl.isl_val_copy(self)
+ val2 = libisl.isl_val_copy(other)
+ val = libisl.isl_val_mul(val1, val2)
+ return self.__class__(self.context, self._ptr(val))
+
+ __rmul__ = __mul__
+
+ @_polymorphic
+ def __truediv__(self, other):
+ val1 = libisl.isl_val_copy(self)
+ val2 = libisl.isl_val_copy(other)
+ val = libisl.isl_val_div(val1, val2)
+ return self.__class__(self.context, self._ptr(val))
+
+ __rtruediv__ = __truediv__
+
+ def __float__(self):
+ if libisl.isl_val_is_rat(self):
+ return self.numerator / self.denominator
+ elif libisl.isl_val_is_infty(self):
+ return float('inf')
+ elif libisl.isl_val_is_neginfty(self):
+ return float('-inf')
+ else:
+ assert libisl.isl_val_is_nan(self)
+ return float('nan')
+
+ def is_finite(self):
+ return bool(libisl.isl_val_is_rat(self))
+
+ def is_infinite(self):
+ return bool(libisl.isl_val_is_infty(self) or
+ libisl.isl_val_is_neginfty(self))
+
+ def is_nan(self):
+ return bool(libisl.isl_val_is_nan(self))
+
+ def __str__(self):
+ if libisl.isl_val_is_rat(self):
+ if self.denominator == 1:
+ return '{}'.format(self.numerator)
+ else:
+ return '{}/{}'.format(self.numerator, self.denominator)
+ elif libisl.isl_val_is_infty(self):
+ return 'Infinity'
+ elif libisl.isl_val_is_neginfty(self):
+ return '-Infinity'
+ else:
+ assert libisl.isl_val_is_nan(self)
+ return 'NaN'
+
+ def __repr__(self):
+ return '{}({!r})'.format(self.__class__.__name__, str(self))
--- /dev/null
+
+import functools
+import numbers
+
+from fractions import Fraction, gcd
+
+
+__all__ = [
+ 'Expression',
+ 'constant', 'symbol', 'symbols',
+ 'eq', 'le', 'lt', 'ge', 'gt',
+ 'Polyhedron',
+ 'empty', 'universe'
+]
+
+
+class Expression:
+ """
+ This class implements linear expressions.
+ """
+
+ def __new__(cls, coefficients=None, constant=0):
+ if isinstance(coefficients, str):
+ if constant:
+ raise TypeError('too many arguments')
+ return cls.fromstring(coefficients)
+ self = super().__new__(cls)
+ self._coefficients = {}
+ if isinstance(coefficients, dict):
+ coefficients = coefficients.items()
+ if coefficients is not None:
+ for symbol, coefficient in coefficients:
+ if isinstance(symbol, Expression) and symbol.issymbol():
+ symbol = str(symbol)
+ elif not isinstance(symbol, str):
+ raise TypeError('symbols must be strings')
+ if not isinstance(coefficient, numbers.Rational):
+ raise TypeError('coefficients must be rational numbers')
+ if coefficient != 0:
+ self._coefficients[symbol] = coefficient
+ if not isinstance(constant, numbers.Rational):
+ raise TypeError('constant must be a rational number')
+ self._constant = constant
+ return self
+
+ def symbols(self):
+ yield from sorted(self._coefficients)
+
+ @property
+ def dimension(self):
+ return len(list(self.symbols()))
+
+ def coefficient(self, symbol):
+ if isinstance(symbol, Expression) and symbol.issymbol():
+ symbol = str(symbol)
+ elif not isinstance(symbol, str):
+ raise TypeError('symbol must be a string')
+ try:
+ return self._coefficients[symbol]
+ except KeyError:
+ return 0
+
+ __getitem__ = coefficient
+
+ def coefficients(self):
+ for symbol in self.symbols():
+ yield symbol, self.coefficient(symbol)
+
+ @property
+ def constant(self):
+ return self._constant
+
+ def isconstant(self):
+ return len(self._coefficients) == 0
+
+ def values(self):
+ for symbol in self.symbols():
+ yield self.coefficient(symbol)
+ yield self.constant
+
+ def symbol(self):
+ if not self.issymbol():
+ raise ValueError('not a symbol: {}'.format(self))
+ for symbol in self.symbols():
+ return symbol
+
+ def issymbol(self):
+ return len(self._coefficients) == 1 and self._constant == 0
+
+ def __bool__(self):
+ return (not self.isconstant()) or bool(self.constant)
+
+ def __pos__(self):
+ return self
+
+ def __neg__(self):
+ return self * -1
+
+ def _polymorphic(func):
+ @functools.wraps(func)
+ def wrapper(self, other):
+ if isinstance(other, Expression):
+ return func(self, other)
+ if isinstance(other, numbers.Rational):
+ other = Expression(constant=other)
+ return func(self, other)
+ return NotImplemented
+ return wrapper
+
+ @_polymorphic
+ def __add__(self, other):
+ coefficients = dict(self.coefficients())
+ for symbol, coefficient in other.coefficients():
+ if symbol in coefficients:
+ coefficients[symbol] += coefficient
+ else:
+ coefficients[symbol] = coefficient
+ constant = self.constant + other.constant
+ return Expression(coefficients, constant)
+
+ __radd__ = __add__
+
+ @_polymorphic
+ def __sub__(self, other):
+ coefficients = dict(self.coefficients())
+ for symbol, coefficient in other.coefficients():
+ if symbol in coefficients:
+ coefficients[symbol] -= coefficient
+ else:
+ coefficients[symbol] = -coefficient
+ constant = self.constant - other.constant
+ return Expression(coefficients, constant)
+
+ __rsub__ = __sub__
+
+ @_polymorphic
+ def __mul__(self, other):
+ if other.isconstant():
+ coefficients = dict(self.coefficients())
+ for symbol in coefficients:
+ coefficients[symbol] *= other.constant
+ constant = self.constant * other.constant
+ return Expression(coefficients, constant)
+ if isinstance(other, Expression) and not self.isconstant():
+ raise ValueError('non-linear expression: '
+ '{} * {}'.format(self._parenstr(), other._parenstr()))
+ return NotImplemented
+
+ __rmul__ = __mul__
+
+ @_polymorphic
+ def __truediv__(self, other):
+ if other.isconstant():
+ coefficients = dict(self.coefficients())
+ for symbol in coefficients:
+ coefficients[symbol] = \
+ Fraction(coefficients[symbol], other.constant)
+ constant = Fraction(self.constant, other.constant)
+ return Expression(coefficients, constant)
+ if isinstance(other, Expression):
+ raise ValueError('non-linear expression: '
+ '{} / {}'.format(self._parenstr(), other._parenstr()))
+ return NotImplemented
+
+ def __rtruediv__(self, other):
+ if isinstance(other, Rational):
+ if self.isconstant():
+ constant = Fraction(other, self.constant)
+ return Expression(constant=constant)
+ else:
+ raise ValueError('non-linear expression: '
+ '{} / {}'.format(other._parenstr(), self._parenstr()))
+ return NotImplemented
+
+ def __str__(self):
+ string = ''
+ symbols = sorted(self.symbols())
+ i = 0
+ for symbol in symbols:
+ coefficient = self[symbol]
+ if coefficient == 1:
+ if i == 0:
+ string += symbol
+ else:
+ string += ' + {}'.format(symbol)
+ elif coefficient == -1:
+ if i == 0:
+ string += '-{}'.format(symbol)
+ else:
+ string += ' - {}'.format(symbol)
+ else:
+ if i == 0:
+ string += '{}*{}'.format(coefficient, symbol)
+ elif coefficient > 0:
+ string += ' + {}*{}'.format(coefficient, symbol)
+ else:
+ assert coefficient < 0
+ coefficient *= -1
+ string += ' - {}*{}'.format(coefficient, symbol)
+ i += 1
+ constant = self.constant
+ if constant != 0 and i == 0:
+ string += '{}'.format(constant)
+ elif constant > 0:
+ string += ' + {}'.format(constant)
+ elif constant < 0:
+ constant *= -1
+ string += ' - {}'.format(constant)
+ return string
+
+ def _parenstr(self, always=False):
+ string = str(self)
+ if not always and (self.isconstant() or self.issymbol()):
+ return string
+ else:
+ return '({})'.format(string)
+
+ def __repr__(self):
+ string = '{}({{'.format(self.__class__.__name__)
+ for i, (symbol, coefficient) in enumerate(self.coefficients()):
+ if i != 0:
+ string += ', '
+ string += '{!r}: {!r}'.format(symbol, coefficient)
+ string += '}}, {!r})'.format(self.constant)
+ return string
+
+ @classmethod
+ def fromstring(cls, string):
+ raise NotImplementedError
+
+ @_polymorphic
+ def __eq__(self, other):
+ # "normal" equality
+ # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
+ return isinstance(other, Expression) and \
+ self._coefficients == other._coefficients and \
+ self.constant == other.constant
+
+ def __hash__(self):
+ return hash((self._coefficients, self._constant))
+
+ def _canonify(self):
+ lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
+ [value.denominator for value in self.values()])
+ return self * lcm
+
+ @_polymorphic
+ def _eq(self, other):
+ return Polyhedron(equalities=[(self - other)._canonify()])
+
+ @_polymorphic
+ def __le__(self, other):
+ return Polyhedron(inequalities=[(self - other)._canonify()])
+
+ @_polymorphic
+ def __lt__(self, other):
+ return Polyhedron(inequalities=[(self - other)._canonify() + 1])
+
+ @_polymorphic
+ def __ge__(self, other):
+ return Polyhedron(inequalities=[(other - self)._canonify()])
+
+ @_polymorphic
+ def __gt__(self, other):
+ return Polyhedron(inequalities=[(other - self)._canonify() + 1])
+
+
+def constant(numerator=0, denominator=None):
+ return Expression(constant=Fraction(numerator, denominator))
+
+def symbol(name):
+ if not isinstance(name, str):
+ raise TypeError('name must be a string')
+ return Expression(coefficients={name: 1})
+
+def symbols(names):
+ if isinstance(names, str):
+ names = names.replace(',', ' ').split()
+ return (symbol(name) for name in names)
+
+
+def _operator(func):
+ @functools.wraps(func)
+ def wrapper(a, b):
+ if isinstance(a, numbers.Rational):
+ a = constant(a)
+ if isinstance(b, numbers.Rational):
+ b = constant(b)
+ if isinstance(a, Expression) and isinstance(b, Expression):
+ return func(a, b)
+ raise TypeError('arguments must be linear expressions')
+ return wrapper
+
+@_operator
+def eq(a, b):
+ return a._eq(b)
+
+@_operator
+def le(a, b):
+ return a <= b
+
+@_operator
+def lt(a, b):
+ return a < b
+
+@_operator
+def ge(a, b):
+ return a >= b
+
+@_operator
+def gt(a, b):
+ return a > b
+
+
+class Polyhedron:
+ """
+ This class implements polyhedrons.
+ """
+
+ def __new__(cls, equalities=None, inequalities=None):
+ if isinstance(equalities, str):
+ if inequalities is not None:
+ raise TypeError('too many arguments')
+ return cls.fromstring(equalities)
+ self = super().__new__(cls)
+ self._equalities = []
+ if equalities is not None:
+ for constraint in equalities:
+ for value in constraint.values():
+ if value.denominator != 1:
+ raise TypeError('non-integer constraint: '
+ '{} == 0'.format(constraint))
+ self._equalities.append(constraint)
+ self._inequalities = []
+ if inequalities is not None:
+ for constraint in inequalities:
+ for value in constraint.values():
+ if value.denominator != 1:
+ raise TypeError('non-integer constraint: '
+ '{} <= 0'.format(constraint))
+ self._inequalities.append(constraint)
+ return self
+
+ @property
+ def equalities(self):
+ yield from self._equalities
+
+ @property
+ def inequalities(self):
+ yield from self._inequalities
+
+ def constraints(self):
+ yield from self.equalities
+ yield from self.inequalities
+
+ def symbols(self):
+ s = set()
+ for constraint in self.constraints():
+ s.update(constraint.symbols)
+ yield from sorted(s)
+
+ @property
+ def dimension(self):
+ return len(self.symbols())
+
+ def __bool__(self):
+ # return false if the polyhedron is empty, true otherwise
+ raise NotImplementedError
+
+ def __contains__(self, value):
+ # is the value in the polyhedron?
+ raise NotImplementedError
+
+ def __eq__(self, other):
+ raise NotImplementedError
+
+ def isempty(self):
+ return self == empty
+
+ def isuniverse(self):
+ return self == universe
+
+ def isdisjoint(self, other):
+ # return true if the polyhedron has no elements in common with other
+ raise NotImplementedError
+
+ def issubset(self, other):
+ raise NotImplementedError
+
+ def __le__(self, other):
+ return self.issubset(other)
+
+ def __lt__(self, other):
+ raise NotImplementedError
+
+ def issuperset(self, other):
+ # test whether every element in other is in the polyhedron
+ raise NotImplementedError
+
+ def __ge__(self, other):
+ return self.issuperset(other)
+
+ def __gt__(self, other):
+ raise NotImplementedError
+
+ def union(self, *others):
+ # return a new polyhedron with elements from the polyhedron and all
+ # others (convex union)
+ raise NotImplementedError
+
+ def __or__(self, other):
+ return self.union(other)
+
+ def intersection(self, *others):
+ # return a new polyhedron with elements common to the polyhedron and all
+ # others
+ # a poor man's implementation could be:
+ # equalities = list(self.equalities)
+ # inequalities = list(self.inequalities)
+ # for other in others:
+ # equalities.extend(other.equalities)
+ # inequalities.extend(other.inequalities)
+ # return self.__class__(equalities, inequalities)
+ raise NotImplementedError
+
+ def __and__(self, other):
+ return self.intersection(other)
+
+ def difference(self, *others):
+ # return a new polyhedron with elements in the polyhedron that are not
+ # in the others
+ raise NotImplementedError
+
+ def __sub__(self, other):
+ return self.difference(other)
+
+ def __str__(self):
+ constraints = []
+ for constraint in self.equalities:
+ constraints.append('{} == 0'.format(constraint))
+ for constraint in self.inequalities:
+ constraints.append('{} <= 0'.format(constraint))
+ return '{{{}}}'.format(', '.join(constraints))
+
+ def __repr__(self):
+ equalities = list(self.equalities)
+ inequalities = list(self.inequalities)
+ return '{}(equalities={!r}, inequalities={!r})' \
+ ''.format(self.__class__.__name__, equalities, inequalities)
+
+ @classmethod
+ def fromstring(cls, string):
+ raise NotImplementedError
+
+
+empty = le(1, 0)
+
+universe = Polyhedron()
--- /dev/null
+#!/usr/bin/env python3
+
+from distutils.core import setup
+
+setup(
+ name='pypol',
+ description='A polyhedral library based on ISL',
+ author='MINES ParisTech',
+ packages=['pypol']
+)
--- /dev/null
+
+import unittest
+
+from math import floor, ceil, trunc
+
+from pypol.isl import *
+
+
+class TestContext(unittest.TestCase):
+
+ def test_eq(self):
+ ctx1, ctx2 = Context(), Context()
+ self.assertEqual(ctx1, ctx1)
+ self.assertNotEqual(ctx1, ctx2)
+
+
+class TestValue(unittest.TestCase):
+
+ def setUp(self):
+ self.context = Context()
+ self.zero = Value(self.context)
+ self.nan = Value(self.context, 'NaN')
+ self.inf = Value(self.context, 'Inf')
+ self.neginf = Value(self.context, '-Inf')
+ self.answer = Value(self.context, 42)
+ self.pi = Value(self.context, 22, 7)
+
+ def test_init(self):
+ self.assertEqual(Value(self.context, 42), self.answer)
+ self.assertEqual(Value(self.context, '42'), self.answer)
+ self.assertEqual(Value(self.context, 22, 7), self.pi)
+ self.assertEqual(Value(self.context, '-22/7'), -self.pi)
+ self.assertTrue(Value(self.context, 'nan').is_nan())
+ self.assertTrue(Value(self.context, '-nan').is_nan())
+ self.assertTrue(Value(self.context, 'NaN').is_nan())
+ self.assertEqual(Value(self.context, '-inf'), self.neginf)
+ self.assertEqual(Value(self.context, '-Infinity'), self.neginf)
+
+ def test_numerator(self):
+ self.assertEqual(self.zero.numerator, 0)
+ self.assertEqual(self.answer.numerator, 42)
+ self.assertEqual(self.pi.numerator, 22)
+ with self.assertRaises(ValueError):
+ self.nan.numerator
+ with self.assertRaises(ValueError):
+ self.inf.numerator
+
+ def test_denominator(self):
+ self.assertEqual(self.zero.denominator, 1)
+ self.assertEqual(self.answer.denominator, 1)
+ self.assertEqual(self.pi.denominator, 7)
+ with self.assertRaises(ValueError):
+ self.nan.denominator
+ with self.assertRaises(ValueError):
+ self.inf.denominator
+
+ def test_bool(self):
+ self.assertFalse(self.zero)
+ self.assertTrue(self.answer)
+ self.assertTrue(self.pi)
+ self.assertEqual(bool(self.nan), bool(float('nan')))
+ self.assertEqual(bool(self.inf), bool(float('inf')))
+
+ def test_lt(self):
+ self.assertTrue(self.neginf < self.zero)
+ self.assertTrue(self.zero < self.pi)
+ self.assertTrue(self.pi < self.answer)
+ self.assertTrue(self.answer < self.inf)
+ self.assertFalse(self.nan < self.answer)
+ self.assertFalse(self.nan < self.inf)
+ self.assertFalse(self.nan < self.neginf)
+ self.assertTrue(self.neginf < self.inf)
+
+ def test_le(self):
+ self.assertTrue(self.pi <= self.pi)
+ self.assertTrue(self.pi <= self.answer)
+ self.assertFalse(self.answer <= self.pi)
+
+ def test_gt(self):
+ self.assertFalse(self.pi > self.pi)
+ self.assertTrue(self.answer > self.pi)
+ self.assertFalse(self.pi > self.answer)
+
+ def test_ge(self):
+ self.assertTrue(self.pi >= self.pi)
+ self.assertTrue(self.answer >= self.pi)
+ self.assertFalse(self.pi >= self.answer)
+
+ def test_eq(self):
+ self.assertEqual(self.pi, self.pi)
+ self.assertEqual(self.inf, self.inf)
+ self.assertNotEqual(self.neginf, self.inf)
+ self.assertNotEqual(self.nan, self.nan)
+ self.assertEqual(self.zero, 0)
+ self.assertEqual(0, self.zero)
+ self.assertEqual(self.pi, Fraction(22, 7))
+ self.assertEqual(Fraction(22, 7), self.pi)
+ with self.assertRaises(TypeError):
+ self.zero == 0.
+
+ def test_ne(self):
+ self.assertTrue(self.pi != self.answer)
+ self.assertFalse(self.pi != self.pi)
+ self.assertTrue(self.neginf != self.inf)
+ self.assertTrue(self.nan != self.nan)
+
+ def test_abs(self):
+ self.assertEqual(abs(self.pi), self.pi)
+ self.assertEqual(abs(self.neginf), self.inf)
+ self.assertEqual(abs(-self.pi), self.pi)
+ self.assertTrue(abs(self.nan).is_nan())
+
+ def test_pos(self):
+ self.assertEqual(+self.pi, self.pi)
+
+ def test_neg(self):
+ self.assertEqual(-self.neginf, self.inf)
+ self.assertEqual(-(-self.pi), self.pi)
+
+ def test_floor(self):
+ self.assertEqual(floor(self.pi), Value(self.context, 3))
+ self.assertEqual(floor(-self.pi), Value(self.context, -4))
+ # not float behavior, but makes sense
+ self.assertEqual(floor(self.inf), self.inf)
+ self.assertTrue(floor(self.nan).is_nan())
+
+ def test_ceil(self):
+ self.assertEqual(ceil(self.pi), Value(self.context, 4))
+ self.assertRaises(ceil(-self.pi) == Value(self.context, -3))
+
+ def test_trunc(self):
+ self.assertEqual(trunc(self.pi), Value(self.context, 3))
+ self.assertEqual(trunc(-self.pi), Value(self.context, -3))
+
+ def test_add(self):
+ self.assertEqual(self.answer + self.answer, Value(self.context, 84))
+ self.assertEqual(self.answer + self.pi, Value(self.context, 316, 7))
+ self.assertEqual(self.pi + self.pi, Value(self.context, 44, 7))
+ self.assertEqual(self.pi + self.neginf, self.neginf)
+ self.assertEqual(self.pi + self.inf, self.inf)
+ self.assertTrue((self.pi + self.nan).is_nan())
+ self.assertTrue((self.inf + self.nan).is_nan())
+ self.assertTrue((self.inf + self.neginf).is_nan())
+ self.assertEqual(self.pi + 42, Value(self.context, 316, 7))
+ self.assertEqual(42 + self.pi, Value(self.context, 316, 7))
+ self.assertEqual(self.pi + Fraction(22, 7), Value(self.context, 44, 7))
+ with self.assertRaises(TypeError):
+ self.pi + float(42)
+
+ def test_sub(self):
+ self.assertEqual(self.answer - self.pi, Value(self.context, 272, 7))
+
+ def test_mul(self):
+ self.assertEqual(Value(self.context, 6) * Value(self.context, 7), self.answer)
+ self.assertNotEqual(Value(self.context, 6) * Value(self.context, 9), self.answer)
+ self.assertEqual(self.inf * Value(self.context, 2), self.inf)
+ self.assertEqual(self.inf * Value(self.context, -2), self.neginf)
+ self.assertTrue((self.nan * Value(self.context, 2)).is_nan())
+ self.assertTrue((self.nan * self.inf).is_nan())
+
+ def test_div(self):
+ self.assertEqual(Value(self.context, 22) / Value(self.context, 7), self.pi)
+ self.assertEqual(self.pi / self.pi, Value(self.context, 1))
+ # not float behavior, but makes sense
+ self.assertTrue((self.pi / self.zero).is_nan())
+
+ def test_float(self):
+ self.assertAlmostEqual(float(Value(self.context, 1, 2)), 0.5)
+ self.assertTrue(math.isnan(float(Value(self.context, 'NaN'))))
+ self.assertAlmostEqual(float(Value(self.context, 'Inf')), float('inf'))
+
+ def test_is_finite(self):
+ self.assertTrue(self.pi.is_finite())
+ self.assertFalse(self.inf.is_finite())
+ self.assertFalse(self.nan.is_finite())
+
+ def test_is_infinite(self):
+ self.assertFalse(self.pi.is_infinite())
+ self.assertTrue(self.inf.is_infinite())
+ self.assertFalse(self.nan.is_infinite())
+
+ def test_is_nan(self):
+ self.assertFalse(self.pi.is_nan())
+ self.assertFalse(self.inf.is_nan())
+ self.assertTrue(self.nan.is_nan())
+
+ def test_str(self):
+ self.assertEqual(str(self.answer), '42')
+ self.assertEqual(str(self.pi), '22/7')
+ self.assertEqual(str(self.nan), 'NaN')
+ self.assertEqual(str(self.inf), 'Infinity')
+ self.assertEqual(str(self.neginf), '-Infinity')
+
+ def test_repr(self):
+ self.assertEqual(repr(self.answer), "Value('42')")
+ self.assertEqual(repr(self.pi), "Value('22/7')")
+ self.assertEqual(repr(self.nan), "Value('NaN')")
+ self.assertEqual(repr(self.inf), "Value('Infinity')")
+ self.assertEqual(repr(self.neginf), "Value('-Infinity')")
--- /dev/null
+
+import unittest
+
+from fractions import Fraction
+
+from pypol.linear import *
+
+
+class TestExpression(unittest.TestCase):
+
+ def setUp(self):
+ self.x = symbol('x')
+ self.y = symbol('y')
+ self.z = symbol('z')
+ self.zero = constant(0)
+ self.pi = constant(Fraction(22, 7))
+ self.e = self.x - 2*self.y + 3
+
+ def test_new(self):
+ pass
+
+ def test_symbols(self):
+ self.assertCountEqual(self.x.symbols(), ['x'])
+ self.assertCountEqual(self.pi.symbols(), [])
+ self.assertCountEqual(self.e.symbols(), ['x', 'y'])
+
+ def test_dimension(self):
+ self.assertEqual(self.x.dimension, 1)
+ self.assertEqual(self.pi.dimension, 0)
+ self.assertEqual(self.e.dimension, 2)
+
+ def test_coefficient(self):
+ self.assertEqual(self.e.coefficient('x'), 1)
+ self.assertEqual(self.e.coefficient('y'), -2)
+ self.assertEqual(self.e.coefficient(self.y), -2)
+ self.assertEqual(self.e.coefficient('z'), 0)
+ with self.assertRaises(TypeError):
+ self.e.coefficient(0)
+ with self.assertRaises(TypeError):
+ self.e.coefficient(self.e)
+
+ def test_getitem(self):
+ self.assertEqual(self.e['x'], 1)
+ self.assertEqual(self.e['y'], -2)
+ self.assertEqual(self.e[self.y], -2)
+ self.assertEqual(self.e['z'], 0)
+ with self.assertRaises(TypeError):
+ self.e[0]
+ with self.assertRaises(TypeError):
+ self.e[self.e]
+
+ def test_coefficients(self):
+ self.assertCountEqual(self.e.coefficients(), [('x', 1), ('y', -2)])
+
+ def test_constant(self):
+ self.assertEqual(self.x.constant, 0)
+ self.assertEqual(self.pi.constant, Fraction(22, 7))
+ self.assertEqual(self.e.constant, 3)
+
+ def test_isconstant(self):
+ self.assertFalse(self.x.isconstant())
+ self.assertTrue(self.pi.isconstant())
+ self.assertFalse(self.e.isconstant())
+
+ def test_values(self):
+ self.assertCountEqual(self.e.values(), [1, -2, 3])
+
+ def test_symbol(self):
+ self.assertEqual(self.x.symbol(), 'x')
+ with self.assertRaises(ValueError):
+ self.pi.symbol()
+ with self.assertRaises(ValueError):
+ self.e.symbol()
+
+ def test_issymbol(self):
+ self.assertTrue(self.x.issymbol())
+ self.assertFalse(self.pi.issymbol())
+ self.assertFalse(self.e.issymbol())
+
+ def test_bool(self):
+ self.assertTrue(self.x)
+ self.assertFalse(self.zero)
+ self.assertTrue(self.pi)
+ self.assertTrue(self.e)
+
+ def test_pos(self):
+ self.assertEqual(+self.e, self.e)
+
+ def test_neg(self):
+ self.assertEqual(-self.e, -self.x + 2*self.y - 3)
+
+ def test_add(self):
+ self.assertEqual(self.x + Fraction(22, 7), self.x + self.pi)
+ self.assertEqual(Fraction(22, 7) + self.x, self.x + self.pi)
+ self.assertEqual(self.x + self.x, 2 * self.x)
+ self.assertEqual(self.e + 2*self.y, self.x + 3)
+
+ def test_sub(self):
+ self.assertEqual(self.x - self.x, 0)
+ self.assertEqual(self.e - 3, self.x - 2*self.y)
+
+ def test_mul(self):
+ self.assertEqual(self.pi * 7, 22)
+ self.assertEqual(self.e * 0, 0)
+ self.assertEqual(self.e * 2, 2*self.x - 4*self.y + 6)
+
+ def test_div(self):
+ with self.assertRaises(ZeroDivisionError):
+ self.e / 0
+ self.assertEqual(self.e / 2, self.x / 2 - self.y + Fraction(3, 2))
+
+ def test_str(self):
+ self.assertEqual(str(self.x), 'x')
+ self.assertEqual(str(-self.x), '-x')
+ self.assertEqual(str(self.pi), '22/7')
+ self.assertEqual(str(self.e), 'x - 2*y + 3')
+
+ def test_repr(self):
+ self.assertEqual(repr(self.e), "Expression({'x': 1, 'y': -2}, 3)")
+
+ @unittest.expectedFailure
+ def test_fromstring(self):
+ self.assertEqual(Expression.fromstring('x'), self.x)
+ self.assertEqual(Expression.fromstring('-x'), -self.x)
+ self.assertEqual(Expression.fromstring('22/7'), self.pi)
+ self.assertEqual(Expression.fromstring('x - 2y + 3'), self.e)
+ self.assertEqual(Expression.fromstring('x - (3-1)y + 3'), self.e)
+ self.assertEqual(Expression.fromstring('x - 2*y + 3'), self.e)
+
+ def test_eq(self):
+ self.assertEqual(self.e, self.e)
+ self.assertNotEqual(self.x, self.y)
+ self.assertEqual(self.zero, 0)
+
+ def test_canonify(self):
+ self.assertEqual((self.x + self.y/2 + self.z/3)._canonify(),
+ 6*self.x + 3*self.y + 2*self.z)
+
+
+class TestHelpers(unittest.TestCase):
+
+ def setUp(self):
+ self.x = symbol('x')
+ self.y = symbol('y')
+
+ def test_constant(self):
+ self.assertEqual(constant(3), 3)
+ self.assertEqual(constant('3'), 3)
+ self.assertEqual(constant(Fraction(3, 4)), Fraction(3, 4))
+ self.assertEqual(constant('3/4'), Fraction(3, 4))
+ with self.assertRaises(ValueError):
+ constant('a')
+ with self.assertRaises(TypeError):
+ constant([])
+
+ def test_symbol(self):
+ self.assertEqual(symbol('x'), self.x)
+ self.assertNotEqual(symbol('y'), self.x)
+ with self.assertRaises(TypeError):
+ symbol(0)
+
+ def test_symbols(self):
+ self.assertListEqual(list(symbols('x y')), [self.x, self.y])
+ self.assertListEqual(list(symbols('x,y')), [self.x, self.y])
+ self.assertListEqual(list(symbols(['x', 'y'])), [self.x, self.y])
+
+
+class TestOperators(unittest.TestCase):
+
+ pass
+
+
+class TestPolyhedron(unittest.TestCase):
+
+ pass
+