x, y = symbols('x y')
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
-sq2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
+sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
u = Polyhedron([])
+x = sq1 - sq2
print('sq1 =', sq1) #print correct square
print('sq2 =', sq2) #print correct square
print('¬sq1 =', ~sq1) #test compliment
print()
print('sq1 + sq1 =', sq1 + sq2) #test addition
-print('sq1 + sq2 =', Polyhedron(sq1 + sq2))
-print('sq1 - sq1 =', u - u)
+print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
+print()
+print('u + u =', u + u)#test addition
+print('u - u =', u - u) #test subtraction
+print()
print('sq2 - sq1 =', sq2 - sq1) #test subtraction
-print('sq2 - sq1 =', Polyhedron(sq2 - sq1))
-print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test polyhedreon
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
print()
print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
print('sq1 ∪ sq2 =', sq1 | sq2) #test union
print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #test convex union
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
print()
print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
print()
print()
print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print()
print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('Polyhedral hull of sq1 is:', sq1.polyhedral_hull())
+print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same
+ #value as Polyhedron(sq1 + sq2)
print()
-print('is sq1 bounded?', sq1.isbounded())
-print('is sq5 bounded?', sq5.isbounded())
+print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
+print()
+print('sq6:', sq6)
+print('sq6 simplified:', sq6.sample())
+
self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y])
self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
- self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
- self.square5 = Polyhedron(inequalities=[x, 3 - x, y])
- self.square6 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
+ self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.square6 = Polyhedron(equalities=[3 - y], inequalities=[x - 1, 3 - x, y - 1])
+ self.unbound_poly = Polyhedron(inequalities=[x, 3 - x, y])
self.universe = Polyhedron([])
+ self.empty = Empty
self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.sample = And(Eq(y - 3, 0), Eq(x - 1, 0))
self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
def test_isempty(self):
self.assertFalse(self.square1.isempty())
+ self.assertTrue(self.empty.isempty())
def test_isuniverse(self):
self.assertFalse(self.square1.isuniverse())
def test_isbounded(self):
self.assertTrue(self.square1.isbounded())
- self.assertFalse(self.square5.isbounded())
+ self.assertFalse(self.unbound_poly.isbounded())
def test_eq(self):
self.assertTrue(self.square1.__eq__(self.square1))
def test_isdisjoint(self):
self.assertFalse(self.square1.isdisjoint(self.square2))
- self.assertTrue(self.square1.isdisjoint(self.square6))
+ self.assertTrue(self.square1.isdisjoint(self.square5))
def test_issubset(self):
- self.assertTrue(self.square4.issubset(self.square5))
+ self.assertTrue(self.square4.issubset(self.unbound_poly))
self.assertFalse(self.square1.issubset(self.square2))
def test_le(self):
- self.assertTrue(self.square4.__lt__(self.square3))
+ self.assertTrue(self.square4.__le__(self.square3))
+ self.assertFalse(self.square3.__le__(self.square4))
def test_lt(self):
- self.assertTrue(self.square4.__le__(self.square3))
+ self.assertTrue(self.square4.__lt__(self.square3))
+ self.assertFalse(self.square3.__lt__(self.square4))
def test_compliment(self):
self.assertEqual(~self.square1, self.compliment)
- def test_simplify(self):
- #maybe wont need this method
- pass
-
def test_polyhedral_hull(self):
self.assertEqual(self.square1.polyhedral_hull(), self.hull)
- def test_project(self):
- #maybe wont need this method
- pass
+ def test_simplify(self):
+ self.assertEqual(self.universe.simplify(), self.universe)
+ self.assertEqual(self.empty.simplify(), Empty)
def test_sample(self):
- pass
+ self.assertEqual(self.empty.sample(), Empty)
+ self.assertEqual(self.universe.sample(), self.universe)
+ self.assertEqual(self.square6.sample(), self.sample)
def test_intersection(self):
self.assertEqual(self.square1.intersection(self.square2), self.intersection)
def test_difference(self):
self.assertEqual(self.square2 - self.square1, self.difference1)
self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
+ self.assertEqual(self.square2 - self.square2, Empty)
+ self.assertEqual(self.universe - self.universe, Empty)
def test_lexmin(self):
self.assertEqual(self.square1.lexmin(), self.lexmin)
def test_lexmax(self):
self.assertEqual(self.square1.lexmax(), self.lexmax)
-
-
-
- pass