from fractions import Fraction, gcd
-from . import isl
-from .isl import libisl
+from pypol import isl
+from pypol.isl import libisl
__all__ = [
@_polymorphic_operator
def eq(a, b):
- return a._eq(b)
+ return a.__eq__(b)
@_polymorphic_operator
def le(a, b):
- return a <= b
+ return a.__le__(b)
@_polymorphic_operator
def lt(a, b):
- return a < b
+ return a.__lt__(b)
@_polymorphic_operator
def ge(a, b):
- return a >= b
+ return a.__ge__(b)
@_polymorphic_operator
def gt(a, b):
- return a > b
+ return a.__gt__(b)
class Polyhedron:
raise NotImplementedError
def __eq__(self, other):
- raise NotImplementedError
+ # works correctly when symbols is not passed
+ # should be equal if values are the same even if symbols are different
+ bset = self._toisl()
+ other = other._toisl()
+ return bool(libisl.isl_basic_set_plain_is_equal(bset, other))
def isempty(self):
bset = self._toisl()
return bool(libisl.isl_basic_set_is_empty(bset))
def isuniverse(self):
- raise NotImplementedError
+ bset = self._toisl()
+ return bool(libisl.isl_basic_set_is_universe(bset))
def isdisjoint(self, other):
# return true if the polyhedron has no elements in common with other
- raise NotImplementedError
+ #symbols = self._symbolunion(other)
+ bset = self._toisl()
+ other = other._toisl()
+ return bool(libisl.isl_set_is_disjoint(bset, other))
def issubset(self, other):
- raise NotImplementedError
+ # check if self(bset) is a subset of other
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ return bool(libisl.isl_set_is_strict_subset(other, bset))
def __le__(self, other):
return self.issubset(other)
def __lt__(self, other):
- raise NotImplementedError
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ return bool(libisl.isl_set_is_strict_subset(other, bset))
def issuperset(self, other):
# test whether every element in other is in the polyhedron
return self.issuperset(other)
def __gt__(self, other):
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ bool(libisl.isl_set_is_strict_subset(other, bset))
raise NotImplementedError
def union(self, *others):
def __and__(self, other):
return self.intersection(other)
- def difference(self, *others):
- # return a new polyhedron with elements in the polyhedron that are not
- # in the others
- raise NotImplementedError
+ def difference(self, other):
+ # return a new polyhedron with elements in the polyhedron that are not in the other
+ symbols = self._symbolunion(other)
+ bset = self._toisl(symbols)
+ other = other._toisl(symbols)
+ difference = libisl.isl_set_subtract(bset, other)
+ return difference
+
def __sub__(self, other):
return self.difference(other)
space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
ls = libisl.isl_local_space_from_space(space)
- ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
- cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
- '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set'''
- if list(self.equalities): #check if any equalities exist
- for eq in self.equalities:
- coeff_eq = dict(eq.coefficients())
- if eq.constant:
- value = eq.constant
- ceq = libisl.isl_constraint_set_constant_si(ceq, value)
- for eq in coeff_eq:
- num = coeff_eq.get(eq)
- iden = symbols.index(eq)
- ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, ceq)
- if list(self.inequalities): #check if any inequalities exist
- for ineq in self.inequalities:
- coeff_in = dict(ineq.coefficients())
- if ineq.constant:
- value = ineq.constant
- cin = libisl.isl_constraint_set_constant_si(cin, value)
- for ineq in coeff_in:
- num = coeff_in.get(ineq)
- iden = symbols.index(ineq)
- cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, cin)
+ #if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set
+ for eq in self.equalities:
+ ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
+ coeff_eq = dict(eq.coefficients())
+ if eq.constant:
+ value = str(eq.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, value)
+ ceq = libisl.isl_constraint_set_constant_val(ceq, val)
+ for eq in coeff_eq:
+ number = str(coeff_eq.get(eq)).encode()
+ num = libisl.isl_val_read_from_str(_main_ctx, number)
+ iden = symbols.index(eq)
+ ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+ for ineq in self.inequalities:
+ cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
+ coeff_in = dict(ineq.coefficients())
+ if ineq.constant:
+ value = str(ineq.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, value)
+ cin = libisl.isl_constraint_set_constant_val(cin, val)
+ for ineq in coeff_in:
+ number = str(coeff_in.get(ineq)).encode()
+ num = libisl.isl_val_read_from_str(_main_ctx, number)
+ iden = symbols.index(ineq)
+ cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, cin)
bset = isl.BasicSet(bset)
return bset
isl example code gives isl form as:
"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
our printer is giving form as:
- b'{ [i0] : 1 = 0 }' '''
- #bset = self
- # if self._equalities:
- # constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
- # elif self._inequalities:
- # constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
- # print(constraints)
- # return constraints
+ { [i0, i1] : 2i1 >= -2 - i0 } '''
empty = None #eq(0,1)
universe = None #Polyhedron()
-
if __name__ == '__main__':
- ex1 = Expression(coefficients={'a': 1, 'x': 2}, constant=2)
- ex2 = Expression(coefficients={'a': 3 , 'b': 2}, constant=3)
- p = Polyhedron(inequalities=[ex1, ex2])
- bs = p._toisl()
- print(bs)
- print('empty ?', p.isempty())
- print('empty ?', eq(0, 1).isempty())
+ ex1 = Expression(coefficients={'a': 6, 'b': 6}, constant= 3) #this is the expression that does not work (even without adding values)
+ ex2 = Expression(coefficients={'x': 4, 'y': 2}, constant= 3)
+ p = Polyhedron(equalities=[ex2])
+ p2 = Polyhedron(equalities=[ex2])
+ print(p._toisl()) # checking is values works for toisl