5 from . import islhelper
7 from .islhelper
import mainctx
, libisl
, isl_set_basic_sets
8 from .linexprs
import Expression
, Symbol
, symbolnames
17 @functools.total_ordering
26 def __new__(cls
, *polyhedra
):
27 from .polyhedra
import Polyhedron
28 if len(polyhedra
) == 1:
29 polyhedron
= polyhedra
[0]
30 if isinstance(polyhedron
, str):
31 return cls
.fromstring(polyhedron
)
32 elif isinstance(polyhedron
, Polyhedron
):
35 raise TypeError('argument must be a string '
36 'or a Polyhedron instance')
38 for polyhedron
in polyhedra
:
39 if not isinstance(polyhedron
, Polyhedron
):
40 raise TypeError('arguments must be Polyhedron instances')
41 symbols
= cls
._xsymbols
(polyhedra
)
42 islset
= cls
._toislset
(polyhedra
, symbols
)
43 return cls
._fromislset
(islset
, symbols
)
46 def _xsymbols(cls
, iterator
):
48 Return the ordered tuple of symbols present in iterator.
52 symbols
.update(item
.symbols
)
53 return tuple(sorted(symbols
))
57 return self
._polyhedra
65 return self
._dimension
68 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
69 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
70 return self
._fromislset
(islset
, self
.symbols
)
73 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
74 empty
= bool(libisl
.isl_set_is_empty(islset
))
75 libisl
.isl_set_free(islset
)
79 return not self
.isempty()
82 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
83 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
84 libisl
.isl_set_free(islset
)
88 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
89 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
90 libisl
.isl_set_free(islset
)
93 def __eq__(self
, other
):
94 symbols
= self
._xsymbols
([self
, other
])
95 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
96 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
97 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
98 libisl
.isl_set_free(islset1
)
99 libisl
.isl_set_free(islset2
)
102 def isdisjoint(self
, other
):
103 symbols
= self
._xsymbols
([self
, other
])
104 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
105 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
106 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
107 libisl
.isl_set_free(islset1
)
108 libisl
.isl_set_free(islset2
)
111 def issubset(self
, other
):
112 symbols
= self
._xsymbols
([self
, other
])
113 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
114 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
115 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
116 libisl
.isl_set_free(islset1
)
117 libisl
.isl_set_free(islset2
)
120 def __le__(self
, other
):
121 return self
.issubset(other
)
123 def __lt__(self
, other
):
124 symbols
= self
._xsymbols
([self
, other
])
125 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
126 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
127 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
128 libisl
.isl_set_free(islset1
)
129 libisl
.isl_set_free(islset2
)
132 def complement(self
):
133 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
134 islset
= libisl
.isl_set_complement(islset
)
135 return self
._fromislset
(islset
, self
.symbols
)
137 def __invert__(self
):
138 return self
.complement()
141 #does not change anything in any of the examples
142 #isl seems to do this naturally
143 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
144 islset
= libisl
.isl_set_remove_redundancies(islset
)
145 return self
._fromislset
(islset
, self
.symbols
)
147 def polyhedral_hull(self
):
148 # several types of hull are available
149 # polyhedral seems to be the more appropriate, to be checked
150 from .polyhedra
import Polyhedron
151 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
152 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
153 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
155 def project_out(self
, symbols
):
156 # use to remove certain variables
157 symbols
= symbolnames(symbols
)
158 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
159 # the trick is to walk symbols in reverse order, to avoid index updates
160 for index
, symbol
in reversed(list(enumerate(self
.symbols
))):
161 if symbol
in symbols
:
162 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, index
, 1)
164 symbols
= [symbol
for symbol
in self
.symbols
if symbol
not in symbols
]
165 return Domain
._fromislset
(islset
, symbols
)
168 from .polyhedra
import Polyhedron
169 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
170 islbset
= libisl
.isl_set_sample(islset
)
171 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
173 def intersection(self
, *others
):
176 symbols
= self
._xsymbols
((self
,) + others
)
177 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
179 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
180 islset1
= libisl
.isl_set_intersect(islset1
, islset2
)
181 return self
._fromislset
(islset1
, symbols
)
183 def __and__(self
, other
):
184 return self
.intersection(other
)
186 def union(self
, *others
):
189 symbols
= self
._xsymbols
((self
,) + others
)
190 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
192 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
193 islset1
= libisl
.isl_set_union(islset1
, islset2
)
194 return self
._fromislset
(islset1
, symbols
)
196 def __or__(self
, other
):
197 return self
.union(other
)
199 def __add__(self
, other
):
200 return self
.union(other
)
202 def difference(self
, other
):
203 symbols
= self
._xsymbols
([self
, other
])
204 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
205 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
206 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
207 return self
._fromislset
(islset
, symbols
)
209 def __sub__(self
, other
):
210 return self
.difference(other
)
213 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
214 islset
= libisl
.isl_set_lexmin(islset
)
215 return self
._fromislset
(islset
, self
.symbols
)
218 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
219 islset
= libisl
.isl_set_lexmax(islset
)
220 return self
._fromislset
(islset
, self
.symbols
)
223 def _fromislset(cls
, islset
, symbols
):
224 from .polyhedra
import Polyhedron
225 islset
= libisl
.isl_set_remove_divs(islset
)
226 islbsets
= isl_set_basic_sets(islset
)
227 libisl
.isl_set_free(islset
)
229 for islbset
in islbsets
:
230 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
231 polyhedra
.append(polyhedron
)
232 if len(polyhedra
) == 0:
233 from .polyhedra
import Empty
235 elif len(polyhedra
) == 1:
238 self
= object().__new
__(Domain
)
239 self
._polyhedra
= tuple(polyhedra
)
240 self
._symbols
= cls
._xsymbols
(polyhedra
)
241 self
._dimension
= len(self
._symbols
)
245 def _toislset(cls
, polyhedra
, symbols
):
246 polyhedron
= polyhedra
[0]
247 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
248 polyhedron
.inequalities
, symbols
)
249 islset1
= libisl
.isl_set_from_basic_set(islbset
)
250 for polyhedron
in polyhedra
[1:]:
251 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
252 polyhedron
.inequalities
, symbols
)
253 islset2
= libisl
.isl_set_from_basic_set(islbset
)
254 islset1
= libisl
.isl_set_union(islset1
, islset2
)
258 def _fromast(cls
, node
):
259 from .polyhedra
import Polyhedron
260 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
261 return cls
._fromast
(node
.body
[0])
262 elif isinstance(node
, ast
.Expr
):
263 return cls
._fromast
(node
.value
)
264 elif isinstance(node
, ast
.UnaryOp
):
265 domain
= cls
._fromast
(node
.operand
)
266 if isinstance(node
.operand
, ast
.invert
):
268 elif isinstance(node
, ast
.BinOp
):
269 domain1
= cls
._fromast
(node
.left
)
270 domain2
= cls
._fromast
(node
.right
)
271 if isinstance(node
.op
, ast
.BitAnd
):
272 return And(domain1
, domain2
)
273 elif isinstance(node
.op
, ast
.BitOr
):
274 return Or(domain1
, domain2
)
275 elif isinstance(node
, ast
.Compare
):
278 left
= Expression
._fromast
(node
.left
)
279 for i
in range(len(node
.ops
)):
281 right
= Expression
._fromast
(node
.comparators
[i
])
282 if isinstance(op
, ast
.Lt
):
283 inequalities
.append(right
- left
- 1)
284 elif isinstance(op
, ast
.LtE
):
285 inequalities
.append(right
- left
)
286 elif isinstance(op
, ast
.Eq
):
287 equalities
.append(left
- right
)
288 elif isinstance(op
, ast
.GtE
):
289 inequalities
.append(left
- right
)
290 elif isinstance(op
, ast
.Gt
):
291 inequalities
.append(left
- right
- 1)
296 return Polyhedron(equalities
, inequalities
)
297 raise SyntaxError('invalid syntax')
299 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
300 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
301 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
302 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
303 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
304 _RE_NUM_VAR
= Expression
._RE
_NUM
_VAR
305 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
308 def fromstring(cls
, string
):
309 # remove curly brackets
310 string
= cls
._RE
_BRACES
.sub(r
'', string
)
311 # replace '=' by '=='
312 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
313 # replace 'and', 'or', 'not'
314 string
= cls
._RE
_AND
.sub(r
' & ', string
)
315 string
= cls
._RE
_OR
.sub(r
' | ', string
)
316 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
317 # add implicit multiplication operators, e.g. '5x' -> '5*x'
318 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
319 # add parentheses to force precedence
320 tokens
= cls
._RE
_OPERATORS
.split(string
)
321 for i
, token
in enumerate(tokens
):
323 token
= '({})'.format(token
)
325 string
= ''.join(tokens
)
326 tree
= ast
.parse(string
, 'eval')
327 return cls
._fromast
(tree
)
330 assert len(self
.polyhedra
) >= 2
331 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
332 return 'Or({})'.format(', '.join(strings
))
335 def fromsympy(cls
, expr
):
336 raise NotImplementedError
339 raise NotImplementedError
343 if len(domains
) == 0:
344 from .polyhedra
import Universe
347 return domains
[0].intersection(*domains
[1:])
350 if len(domains
) == 0:
351 from .polyhedra
import Empty
354 return domains
[0].union(*domains
[1:])