Update reference examples to match the tutorial
[linpy.git] / doc / reference.rst
1
2 .. _reference:
3
4 Module Reference
5 ================
6
7
8 .. _reference_symbols:
9
10 Symbols
11 -------
12
13 *Symbols* are the basic components to build expressions and constraints.
14 They correspond to mathematical variables.
15
16 .. class:: Symbol(name)
17
18 Return a symbol with the name string given in argument.
19 Alternatively, the function :func:`symbols` allows to create several symbols at once.
20 Symbols are instances of class :class:`LinExpr` and inherit its functionalities.
21
22 >>> x = Symbol('x')
23 >>> x
24 x
25
26 Two instances of :class:`Symbol` are equal if they have the same name.
27
28 .. attribute:: name
29
30 The name of the symbol.
31
32 .. method:: asdummy()
33
34 Return a new :class:`Dummy` symbol instance with the same name.
35
36 .. method:: sortkey()
37
38 Return a sorting key for the symbol.
39 It is useful to sort a list of symbols in a consistent order, as comparison functions are overridden (see the documentation of class :class:`LinExpr`).
40
41 >>> sort(symbols, key=Symbol.sortkey)
42
43
44 .. function:: symbols(names)
45
46 This function returns a tuple of symbols whose names are taken from a comma or whitespace delimited string, or a sequence of strings.
47 It is useful to define several symbols at once.
48
49 >>> x, y = symbols('x y')
50 >>> x, y = symbols('x, y')
51 >>> x, y = symbols(['x', 'y'])
52
53
54 Sometimes you need to have a unique symbol. For example, you might need a temporary one in some calculation, which is going to be substituted for something else at the end anyway.
55 This is achieved using ``Dummy('x')``.
56
57 .. class:: Dummy(name=None)
58
59 A variation of :class:`Symbol` in which all symbols are unique and identified by an internal count index.
60 If a name is not supplied then a string value of the count index will be used.
61 This is useful when a unique, temporary variable is needed and the name of the variable used in the expression is not important.
62
63 Unlike :class:`Symbol`, :class:`Dummy` instances with the same name are not equal:
64
65 >>> x = Symbol('x')
66 >>> x1, x2 = Dummy('x'), Dummy('x')
67 >>> x == x1
68 False
69 >>> x1 == x2
70 False
71 >>> x1 == x1
72 True
73
74
75 .. _reference_linexprs:
76
77 Linear Expressions
78 ------------------
79
80 A *linear expression* consists of a list of coefficient-variable pairs that capture the linear terms, plus a constant term.
81 Linear expressions are used to build constraints. They are temporary objects that typically have short lifespans.
82
83 Linear expressions are generally built using overloaded operators.
84 For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :class:`LinExpr`.
85
86 .. class:: LinExpr(coefficients=None, constant=0)
87 LinExpr(string)
88
89 Return a linear expression from a dictionary or a sequence, that maps symbols to their coefficients, and a constant term.
90 The coefficients and the constant term must be rational numbers.
91
92 For example, the linear expression ``x + 2*y + 1`` can be constructed using one of the following instructions:
93
94 >>> x, y = symbols('x y')
95 >>> LinExpr({x: 1, y: 2}, 1)
96 >>> LinExpr([(x, 1), (y, 2)], 1)
97
98 However, it may be easier to use overloaded operators:
99
100 >>> x, y = symbols('x y')
101 >>> x + 2*y + 1
102
103 Alternatively, linear expressions can be constructed from a string:
104
105 >>> LinExpr('x + 2y + 1')
106
107 :class:`LinExpr` instances are hashable, and should be treated as immutable.
108
109 A linear expression with a single symbol of coefficient 1 and no constant term is automatically subclassed as a :class:`Symbol` instance.
110 A linear expression with no symbol, only a constant term, is automatically subclassed as a :class:`Rational` instance.
111
112 .. method:: coefficient(symbol)
113 __getitem__(symbol)
114
115 Return the coefficient value of the given symbol, or ``0`` if the symbol does not appear in the expression.
116
117 .. method:: coefficients()
118
119 Iterate over the pairs ``(symbol, value)`` of linear terms in the expression.
120 The constant term is ignored.
121
122 .. attribute:: constant
123
124 The constant term of the expression.
125
126 .. attribute:: symbols
127
128 The tuple of symbols present in the expression, sorted according to :meth:`Symbol.sortkey`.
129
130 .. attribute:: dimension
131
132 The dimension of the expression, i.e. the number of symbols present in it.
133
134 .. method:: isconstant()
135
136 Return ``True`` if the expression only consists of a constant term.
137 In this case, it is a :class:`Rational` instance.
138
139 .. method:: issymbol()
140
141 Return ``True`` if an expression only consists of a symbol with coefficient ``1``.
142 In this case, it is a :class:`Symbol` instance.
143
144 .. method:: values()
145
146 Iterate over the coefficient values in the expression, and the constant term.
147
148 .. method:: __add__(expr)
149
150 Return the sum of two linear expressions.
151
152 .. method:: __sub__(expr)
153
154 Return the difference between two linear expressions.
155
156 .. method:: __mul__(value)
157
158 Return the product of the linear expression by a rational.
159
160 .. method:: __truediv__(value)
161
162 Return the quotient of the linear expression by a rational.
163
164 .. method:: __eq__(expr)
165
166 Test whether two linear expressions are equal.
167
168 As explained below, it is possible to create polyhedra from linear expressions using comparison methods.
169
170 .. method:: __lt__(expr)
171 __le__(expr)
172 __ge__(expr)
173 __gt__(expr)
174
175 Create a new :class:`Polyhedron` instance whose unique constraint is the comparison between two linear expressions.
176 As an alternative, functions :func:`Lt`, :func:`Le`, :func:`Ge` and :func:`Gt` can be used.
177
178 >>> x, y = symbols('x y')
179 >>> x < y
180 x + 1 <= y
181
182 .. method:: scaleint()
183
184 Return the expression multiplied by its lowest common denominator to make all values integer.
185
186 .. method:: subs(symbol, expression)
187 subs(pairs)
188
189 Substitute the given symbol by an expression and return the resulting expression.
190 Raise :exc:`TypeError` if the resulting expression is not linear.
191
192 >>> x, y = symbols('x y')
193 >>> e = x + 2*y + 1
194 >>> e.subs(y, x - 1)
195 3*x - 1
196
197 To perform multiple substitutions at once, pass a sequence or a dictionary of ``(old, new)`` pairs to ``subs``.
198
199 >>> e.subs({x: y, y: x})
200 2*x + y + 1
201
202 .. classmethod:: fromstring(string)
203
204 Create an expression from a string.
205 Raise :exc:`SyntaxError` if the string is not properly formatted.
206
207 There are also methods to convert linear expressions to and from `SymPy <http://sympy.org>`_ expressions:
208
209 .. classmethod:: fromsympy(expr)
210
211 Create a linear expression from a :mod:`sympy` expression.
212 Raise :exc:`TypeError` is the :mod:`sympy` expression is not linear.
213
214 .. method:: tosympy()
215
216 Convert the linear expression to a sympy expression.
217
218
219 Apart from :mod:`Symbol`, a particular case of linear expressions are rational values, i.e. linear expressions consisting only of a constant term, with no symbol.
220 They are implemented by the :class:`Rational` class, that inherits from both :class:`LinExpr` and :class:`fractions.Fraction` classes.
221
222 .. class:: Rational(numerator, denominator=1)
223 Rational(string)
224
225 The first version requires that the *numerator* and *denominator* are instances of :class:`numbers.Rational` and returns a new :class:`Rational` instance with the value ``numerator/denominator``.
226 If the denominator is ``0``, it raises a :exc:`ZeroDivisionError`.
227 The other version of the constructor expects a string.
228 The usual form for this instance is::
229
230 [sign] numerator ['/' denominator]
231
232 where the optional ``sign`` may be either '+' or '-' and the ``numerator`` and ``denominator`` (if present) are strings of decimal digits.
233
234 See the documentation of :class:`fractions.Fraction` for more information and examples.
235
236
237 .. _reference_polyhedra:
238
239 Polyhedra
240 ---------
241
242 A *convex polyhedron* (or simply "polyhedron") is the space defined by a system of linear equalities and inequalities.
243 This space can be unbounded.
244
245 .. class:: Polyhedron(equalities, inequalities)
246 Polyhedron(string)
247 Polyhedron(geometric object)
248
249 Return a polyhedron from two sequences of linear expressions: *equalities* is a list of expressions equal to ``0``, and *inequalities* is a list of expressions greater or equal to ``0``.
250 For example, the polyhedron ``0 <= x <= 2, 0 <= y <= 2`` can be constructed with:
251
252 >>> x, y = symbols('x y')
253 >>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y])
254 >>> square1
255 And(0 <= x, x <= 2, 0 <= y, y <= 2)
256
257 It may be easier to use comparison operators :meth:`LinExpr.__lt__`, :meth:`LinExpr.__le__`, :meth:`LinExpr.__ge__`, :meth:`LinExpr.__gt__`, or functions :func:`Lt`, :func:`Le`, :func:`Eq`, :func:`Ge` and :func:`Gt`, using one of the following instructions:
258
259 >>> x, y = symbols('x y')
260 >>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
261 >>> square1 = Le(0, x, 2) & Le(0, y, 2)
262
263 It is also possible to build a polyhedron from a string.
264
265 >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
266
267 Finally, a polyhedron can be constructed from a :class:`GeometricObject` instance, calling the :meth:`GeometricObject.aspolyedron` method.
268 This way, it is possible to compute the polyhedral hull of a :class:`Domain` instance, i.e., the convex hull of two polyhedra:
269
270 >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
271 >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
272 >>> Polyhedron(square1 | square2)
273 And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3)
274
275 A polyhedron is a :class:`Domain` instance, and, therefore, inherits the functionalities of this class.
276 It is also a :class:`GeometricObject` instance.
277
278 .. attribute:: equalities
279
280 The tuple of equalities.
281 This is a list of :class:`LinExpr` instances that are equal to ``0`` in the polyhedron.
282
283 .. attribute:: inequalities
284
285 The tuple of inequalities.
286 This is a list of :class:`LinExpr` instances that are greater or equal to ``0`` in the polyhedron.
287
288 .. attribute:: constraints
289
290 The tuple of constraints, i.e., equalities and inequalities.
291 This is semantically equivalent to: ``equalities + inequalities``.
292
293 .. method:: convex_union(polyhedron[, ...])
294
295 Return the convex union of two or more polyhedra.
296
297 .. method:: asinequalities()
298
299 Express the polyhedron using inequalities, given as a list of expressions greater or equal to 0.
300
301 .. method:: widen(polyhedron)
302
303 Compute the *standard widening* of two polyhedra, à la Halbwachs.
304
305 In its current implementation, this method is slow and should not be used on large polyhedra.
306
307
308 .. data:: Empty
309
310 The empty polyhedron, whose set of constraints is not satisfiable.
311
312 .. data:: Universe
313
314 The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty.
315
316
317 .. _reference_domains:
318
319 Domains
320 -------
321
322 A *domain* is a union of polyhedra.
323 Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations.
324
325 .. class:: Domain(*polyhedra)
326 Domain(string)
327 Domain(geometric object)
328
329 Return a domain from a sequence of polyhedra.
330
331 >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
332 >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
333 >>> dom = Domain(square1, square2)
334 >>> dom
335 Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 3, 1 <= x, y <= 3, 1 <= y))
336
337 It is also possible to build domains from polyhedra using arithmetic operators :meth:`Domain.__or__`, :meth:`Domain.__invert__` or functions :func:`Or` and :func:`Not`, using one of the following instructions:
338
339 >>> dom = square1 | square2
340 >>> dom = Or(square1, square2)
341
342 Alternatively, a domain can be built from a string:
343
344 >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 1 <= x <= 3, 1 <= y <= 3')
345
346 Finally, a domain can be built from a :class:`GeometricObject` instance, calling the :meth:`GeometricObject.asdomain` method.
347
348 A domain is also a :class:`GeometricObject` instance.
349 A domain with a unique polyhedron is automatically subclassed as a :class:`Polyhedron` instance.
350
351 .. attribute:: polyhedra
352
353 The tuple of polyhedra present in the domain.
354
355 .. attribute:: symbols
356
357 The tuple of symbols present in the domain equations, sorted according to :meth:`Symbol.sortkey`.
358
359 .. attribute:: dimension
360
361 The dimension of the domain, i.e. the number of symbols present in it.
362
363 .. method:: isempty()
364
365 Return ``True`` if the domain is empty, that is, equal to :data:`Empty`.
366
367 .. method:: __bool__()
368
369 Return ``True`` if the domain is non-empty.
370
371 .. method:: isuniverse()
372
373 Return ``True`` if the domain is universal, that is, equal to :data:`Universe`.
374
375 .. method:: isbounded()
376
377 Return ``True`` is the domain is bounded.
378
379 .. method:: __eq__(domain)
380
381 Return ``True`` if two domains are equal.
382
383 .. method:: isdisjoint(domain)
384
385 Return ``True`` if two domains have a null intersection.
386
387 .. method:: issubset(domain)
388 __le__(domain)
389
390 Report whether another domain contains the domain.
391
392 .. method:: __lt__(domain)
393
394 Report whether another domain is contained within the domain.
395
396 .. method:: complement()
397 __invert__()
398
399 Return the complementary domain of the domain.
400
401 .. method:: make_disjoint()
402
403 Return an equivalent domain, whose polyhedra are disjoint.
404
405 .. method:: coalesce()
406
407 Simplify the representation of the domain by trying to combine pairs of polyhedra into a single polyhedron, and return the resulting domain.
408
409 .. method:: detect_equalities()
410
411 Simplify the representation of the domain by detecting implicit equalities, and return the resulting domain.
412
413 .. method:: remove_redundancies()
414
415 Remove redundant constraints in the domain, and return the resulting domain.
416
417 .. method:: project(symbols)
418
419 Project out the sequence of symbols given in arguments, and return the resulting domain.
420
421 .. method:: sample()
422
423 Return a sample of the domain, as an integer instance of :class:`Point`.
424 If the domain is empty, a :exc:`ValueError` exception is raised.
425
426 .. method:: intersection(domain[, ...])
427 __and__(domain)
428
429 Return the intersection of two or more domains as a new domain.
430 As an alternative, function :func:`And` can be used.
431
432 .. method:: union(domain[, ...])
433 __or__(domain)
434 __add__(domain)
435
436 Return the union of two or more domains as a new domain.
437 As an alternative, function :func:`Or` can be used.
438
439 .. method:: difference(domain)
440 __sub__(domain)
441
442 Return the difference between two domains as a new domain.
443
444 .. method:: lexmin()
445
446 Return the lexicographic minimum of the elements in the domain.
447
448 .. method:: lexmax()
449
450 Return the lexicographic maximum of the elements in the domain.
451
452 .. method:: vertices()
453
454 Return the vertices of the domain, as a list of rational instances of :class:`Point`.
455
456 .. method:: points()
457
458 Return the integer points of a bounded domain, as a list of integer instances of :class:`Point`.
459 If the domain is not bounded, a :exc:`ValueError` exception is raised.
460
461 .. method:: __contains__(point)
462
463 Return ``True`` if the point is contained within the domain.
464
465 .. method:: faces()
466
467 Return the list of faces of a bounded domain.
468 Each face is represented by a list of vertices, in the form of rational instances of :class:`Point`.
469 If the domain is not bounded, a :exc:`ValueError` exception is raised.
470
471 .. method:: plot(plot=None, **options)
472
473 Plot a 2D or 3D domain using `matplotlib <http://matplotlib.org/>`_.
474 Draw it to the current *plot* object if present, otherwise create a new one.
475 *options* are keyword arguments passed to the matplotlib drawing functions, they can be used to set the drawing color for example.
476 Raise :exc:`ValueError` is the domain is not 2D or 3D.
477
478 .. method:: subs(symbol, expression)
479 subs(pairs)
480
481 Substitute the given symbol by an expression in the domain constraints.
482 To perform multiple substitutions at once, pass a sequence or a dictionary of ``(old, new)`` pairs to ``subs``.
483 The syntax of this function is similar to :func:`LinExpr.subs`.
484
485 .. classmethod:: fromstring(string)
486
487 Create a domain from a string.
488 Raise :exc:`SyntaxError` if the string is not properly formatted.
489
490 There are also methods to convert a domain to and from `SymPy <http://sympy.org>`_ expressions:
491
492 .. classmethod:: fromsympy(expr)
493
494 Create a domain from a sympy expression.
495
496 .. method:: tosympy()
497
498 Convert the domain to a sympy expression.
499
500
501 .. _reference_operators:
502
503 Comparison and Logic Operators
504 ------------------------------
505
506 The following functions create :class:`Polyhedron` or :class:`Domain` instances using the comparisons of two or more :class:`LinExpr` instances:
507
508 .. function:: Lt(expr1, expr2[, expr3, ...])
509
510 Create the polyhedron with constraints ``expr1 < expr2 < expr3 ...``.
511
512 .. function:: Le(expr1, expr2[, expr3, ...])
513
514 Create the polyhedron with constraints ``expr1 <= expr2 <= expr3 ...``.
515
516 .. function:: Eq(expr1, expr2[, expr3, ...])
517
518 Create the polyhedron with constraints ``expr1 == expr2 == expr3 ...``.
519
520 .. function:: Ne(expr1, expr2[, expr3, ...])
521
522 Create the domain such that ``expr1 != expr2 != expr3 ...``.
523 The result is a :class:`Domain` object, not a :class:`Polyhedron`.
524
525 .. function:: Ge(expr1, expr2[, expr3, ...])
526
527 Create the polyhedron with constraints ``expr1 >= expr2 >= expr3 ...``.
528
529 .. function:: Gt(expr1, expr2[, expr3, ...])
530
531 Create the polyhedron with constraints ``expr1 > expr2 > expr3 ...``.
532
533 The following functions combine :class:`Polyhedron` or :class:`Domain` instances using logic operators:
534
535 .. function:: And(domain1, domain2[, ...])
536
537 Create the intersection domain of the domains given in arguments.
538
539 .. function:: Or(domain1, domain2[, ...])
540
541 Create the union domain of the domains given in arguments.
542
543 .. function:: Not(domain)
544
545 Create the complementary domain of the domain given in argument.
546
547
548 .. _reference_geometry:
549
550 Geometric Objects
551 -----------------
552
553 .. class:: GeometricObject
554
555 :class:`GeometricObject` is an abstract class to represent objects with a geometric representation in space.
556 Subclasses of :class:`GeometricObject` are :class:`Polyhedron`, :class:`Domain` and :class:`Point`.
557 The following elements must be provided:
558
559 .. attribute:: symbols
560
561 The tuple of symbols present in the object expression, sorted according to :class:`Symbol.sortkey()`.
562
563 .. attribute:: dimension
564
565 The dimension of the object, i.e. the number of symbols present in it.
566
567 .. method:: aspolyedron()
568
569 Return a :class:`Polyhedron` object that approximates the geometric object.
570
571 .. method:: asdomain()
572
573 Return a :class:`Domain` object that approximates the geometric object.
574
575 .. class:: Point(coordinates)
576
577 Create a point from a dictionary or a sequence that maps the symbols to their coordinates.
578 Coordinates must be rational numbers.
579
580 For example, the point ``(x: 1, y: 2)`` can be constructed using one of the following instructions:
581
582 >>> x, y = symbols('x y')
583 >>> p = Point({x: 1, y: 2})
584 >>> p = Point([(x, 1), (y, 2)])
585
586 :class:`Point` instances are hashable and should be treated as immutable.
587
588 A point is a :class:`GeometricObject` instance.
589
590 .. attribute:: symbols
591
592 The tuple of symbols present in the point, sorted according to :class:`Symbol.sortkey()`.
593
594 .. attribute:: dimension
595
596 The dimension of the point, i.e. the number of symbols present in it.
597
598 .. method:: coordinate(symbol)
599 __getitem__(symbol)
600
601 Return the coordinate value of the given symbol.
602 Raise :exc:`KeyError` if the symbol is not involved in the point.
603
604 .. method:: coordinates()
605
606 Iterate over the pairs ``(symbol, value)`` of coordinates in the point.
607
608 .. method:: values()
609
610 Iterate over the coordinate values in the point.
611
612 .. method:: isorigin()
613
614 Return ``True`` if all coordinates are ``0``.
615
616 .. method:: __bool__()
617
618 Return ``True`` if not all coordinates are ``0``.
619
620 .. method:: __add__(vector)
621
622 Translate the point by a :class:`Vector` object and return the resulting point.
623
624 .. method:: __sub__(point)
625 __sub__(vector)
626
627 The first version substracts a point from another and returns the resulting vector.
628 The second version translates the point by the opposite vector of *vector* and returns the resulting point.
629
630 .. method:: __eq__(point)
631
632 Test whether two points are equal.
633
634
635 .. class:: Vector(coordinates)
636 Vector(point1, point2)
637
638 The first version creates a vector from a dictionary or a sequence that maps the symbols to their coordinates, similarly to :meth:`Point`.
639 The second version creates a vector between two points.
640
641 :class:`Vector` instances are hashable and should be treated as immutable.
642
643 .. attribute:: symbols
644
645 The tuple of symbols present in the point, sorted according to :class:`Symbol.sortkey()`.
646
647 .. attribute:: dimension
648
649 The dimension of the point, i.e. the number of symbols present in it.
650
651 .. method:: coordinate(symbol)
652 __getitem__(symbol)
653
654 Return the coordinate value of the given symbol.
655 Raise :exc:`KeyError` if the symbol is not involved in the point.
656
657 .. method:: coordinates()
658
659 Iterate over the pairs ``(symbol, value)`` of coordinates in the point.
660
661 .. method:: values()
662
663 Iterate over the coordinate values in the point.
664
665 .. method:: isnull()
666
667 Return ``True`` if all coordinates are ``0``.
668
669 .. method:: __bool__()
670
671 Return ``True`` if not all coordinates are ``0``.
672
673 .. method:: __add__(point)
674 __add__(vector)
675
676 The first version translates the point *point* to the vector and returns the resulting point.
677 The second version adds vector *vector* to the vector and returns the resulting vector.
678
679 .. method:: __sub__(point)
680 __sub__(vector)
681
682 The first version substracts a point from a vector and returns the resulting point.
683 The second version returns the difference vector between two vectors.
684
685 .. method:: __neg__()
686
687 Return the opposite vector.
688
689 .. method:: __mul__(value)
690
691 Multiply the vector by a scalar value and return the resulting vector.
692
693 .. method:: __truediv__(value)
694
695 Divide the vector by a scalar value and return the resulting vector.
696
697 .. method:: __eq__(vector)
698
699 Test whether two vectors are equal.
700
701 .. method:: angle(vector)
702
703 Retrieve the angle required to rotate the vector into the vector passed in argument.
704 The result is an angle in radians, ranging between ``-pi`` and ``pi``.
705
706 .. method:: cross(vector)
707
708 Compute the cross product of two 3D vectors.
709 If either one of the vectors is not three-dimensional, a :exc:`ValueError` exception is raised.
710
711 .. method:: dot(vector)
712
713 Compute the dot product of two vectors.
714
715 .. method:: norm()
716
717 Return the norm of the vector.
718
719 .. method:: norm2()
720
721 Return the squared norm of the vector.
722
723 .. method:: asunit()
724
725 Return the normalized vector, i.e. the vector of same direction but with norm 1.