import unittest
-from ..domains import *
+from pypol import *
+#from ..domains import *
+#from ..linexprs import symbols
+#from ..polyhedra import *
class TestDomain(unittest.TestCase):
def setUp(self):
+ x, y = symbols('x y')
+ self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y])
+ self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
+ self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
+ self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
+ self.square5 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
+ self.square6 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.universe = Polyhedron([])
+ self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+ self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
+ self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+ self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+ self.sum2 =And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
+ self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)), And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0)))
+ self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
+ self.lexmin = And(Eq(y, 0), Eq(x, 0))
+ self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0))
+
+ def test_new(self):
+ with self.assertRaises(TypeError):
+ Polyhedron(1)
+
+ def test_disjoint(self):
+ self.assertEqual(self.square1.disjoint(), self.disjoint)
+
+ def test_isempty(self):
+ self.assertFalse(self.square1.isempty())
+
+ def test_isuniverse(self):
+ self.assertFalse(self.square1.isuniverse())
+ self.assertTrue(self.universe.isuniverse())
+
+ def test_isbounded(self):
+ self.assertTrue(self.square1.isbounded())
+
+ def test_eq(self):
+ self.assertTrue(self.square3.__eq__(self.square5))
+ self.assertTrue(self.square1.__eq__(self.square1))
+ self.assertFalse(self.square1.__eq__(self.square2))
+
+ def test_isdisjoint(self):
+ self.assertFalse(self.square1.isdisjoint(self.square2))
+ self.assertTrue(self.square1.isdisjoint(self.square6))
+
+ def test_issubset(self):
+ self.assertTrue(self.square4.issubset(self.square5))
+ self.assertFalse(self.square1.issubset(self.square2))
+
+ def test_le(self):
+ self.assertTrue(self.square4.__lt__(self.square3))
+
+ def test_lt(self):
+ self.assertTrue(self.square4.__le__(self.square3))
+
+ def test_compliment(self):
+ self.assertEqual(~self.square1, self.compliment)
+
+ def test_simplify(self):
+ #maybe wont need this method
+ pass
+
+ def test_polyhedral_hull(self):
+ self.assertEqual(self.square1.polyhedral_hull(), self.hull)
+
+ def test_project(self):
+ #maybe wont need this method
pass
+
+ def test_sample(self):
+ pass
+
+ def test_intersection(self):
+ self.assertEqual(self.square1.intersection(self.square2), self.intersection)
+
+ def test_and(self):
+ self.assertEqual(self.square2 & self.square1, self.intersection)
+
+ def test_union(self):
+ self.assertEqual(self.square1.union(self.square2), self.union)
+
+ def test_or(self):
+ self.assertEqual(self.square1.__or__(self.square2), self.union)
+
+ def test_add(self):
+ self.assertEqual(self.square2.__add__(self.square1), self.sum1)
+ self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2)
+
+ def test_difference(self):
+ self.assertEqual(self.square2 - self.square1, self.difference1)
+ self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
+
+ def test_lexmin(self):
+ self.assertEqual(self.square1.lexmin(), self.lexmin)
+
+ def test_lexmax(self):
+ self.assertEqual(self.square1.lexmax(), self.lexmax)
+
+
- def test_new(self):
pass
+